Skip to main content

Real-Time Detection of Acute Pain Signals Based on Spikes/LFP

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering
  • 30 Accesses

Abstract

Acute pain is triggered by noxious stimuli that induce changes in neural responses of specific neural circuits at both single neuron and population levels. Detecting acute pain signals may provide a closed-loop feedback signal for neuromodulation to achieve pain relief. Human neuroimaging studies have identified circuit changes in pain states, and brain regions identified by such methods include the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC), which are thought to provide key information on sensory and affective components of pain, respectively. In animal and human studies, methods for detecting acute pain signals in real time have been developed based on invasive or noninvasive neural recordings. This chapter provides an overview of several statistical machine learning and signal processing approaches for detecting acute pain signals based on spikes and/or local field potentials (LFPs) recorded from freely behaving rats. To facilitate closed-loop neuroscience experiments or brain-machine interface (BMI), real-time computational consideration is emphasized. We present various detection strategies and illustrations using the in vivo electrophysiological recordings from the rat ACC and/or S1 and discuss important issues related to robust detection and closed-loop neuromodulation in future practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51, 339–367 (2017)

    Article  Google Scholar 

  2. Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R., Warland, D.: Reading a neural code. Science 252, 1854–1857 (1991)

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2011)

    Google Scholar 

  4. Brodersen, K.H., Wiech, K., Lomakina, E.I., Lin, C.S., et al.: Decoding the perception of pain from fMRI using multivariate pattern analysis. Neuroimage 63, 1162–1170 (2012)

    Article  Google Scholar 

  5. Brown, E.N., et al.: A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci. 18, 7411–7425 (1998)

    Article  Google Scholar 

  6. Brown, E.N., Barbieri, R., Eden, U.T., Frank, L.M.: Likelihood methods for neural data analysis. In: Feng, J. (ed.) Computational Neuroscience: A Comprehensive Approach, pp. 253–286. CRC Press (2003)

    Google Scholar 

  7. Bushnell, M.C., Ceko, M., Low, L.A.: Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502–511 (2013)

    Article  Google Scholar 

  8. Buzsaki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012)

    Article  Google Scholar 

  9. Chen, Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Technical report, McMaster University (2003)

    Google Scholar 

  10. Chen, Z., Sarma, S. (eds.): Dynamic Neuroscience. Springer (2018)

    Google Scholar 

  11. Chen, Z., Wang, J.: Statistical analysis of neuronal population codes for encoding acute pain. In: Proceedings of IEEE ICASSP, Shanghai, pp. 829–833. IEEE (2016)

    Google Scholar 

  12. Chen, Z., Ohara, S., Cao, J., Vialatte, F., Lenz, F.A., Cichocki, A.: Statistical modelling and analysis of laser-evoked potentials of electrocorticogram recordings from awake humans. Comput. Intell. Neurosci. 2007, 10479 (2007)

    Google Scholar 

  13. Chen, Z., Zhang, Q., Tong, A.P.S., Mander, T.R., Wang, J.: Deciphering neuronal population codes for acute thermal pain. J. Neural Eng. 14, 036023 (2017)

    Article  Google Scholar 

  14. Chen, Z., Hu, S., Zhang, Q., Wang, J.: Quickest detection for abrupt changes in neuronal ensemble spiking activity using model- based and model-free approaches. In: Proceedings of IEEE Neural Engineering Conference, Shanghai, pp. 481–485. IEEE (2017)

    Google Scholar 

  15. Copits, B.A., Pullen, M.Y., Gereau, R.W. IV.: Spotlight on pain: optogenetic approaches for interrogating somatosensory circuits. Pain 157, 2424–2433 (2016)

    Article  Google Scholar 

  16. Dale, J., Zhou, H., Zhang, Q., Martinez, E., Hu, S., Liu, K., Urien, L., Chen, Z., Wang, J.: Scaling up cortical control to inhibit chronic pain. Cell Rep. 23, 1301–1313 (2018)

    Article  Google Scholar 

  17. Daou, I., Tuttle, A.H., Longo, G., et al.: Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J. Neurosci. 33, 18631–18640 (2013)

    Article  Google Scholar 

  18. Davis, K.D., Flor, H., Greely, H.T., Iannetti, G.D., Mackey, S., et al.: Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat. Rev. Neurol. 13, 624–638 (2017)

    Article  Google Scholar 

  19. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statist. Comput. 10, 197–208 (2000)

    Article  Google Scholar 

  20. Geuter, S., Gamer, M., Onat, S., Büchel, C.: Parametric trial-by-trial prediction of pain by easily available physiological measures. Pain 155, 994–1001 (2014)

    Article  Google Scholar 

  21. Gordon, N., Salmond, D., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. Part F Radar Sonar Navig. 140, 107–113 (1993)

    Google Scholar 

  22. Gu, L., Uhelski, M.L., Anand, S., Romero-Ortega, M., et al.: Pain inhibition by optogenetic activation of specific anterior cingulate cortical neurons. PLoS One 10, e0117746 (2015)

    Article  Google Scholar 

  23. Guo, X., Zhang, Q., Singh, A., Wang, J., Chen, Z.: Granger causality analysis of rat cortical functional connectivity in pain. J. Neural Eng. 17, 016050 (2020)

    Article  Google Scholar 

  24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer (2008)

    Google Scholar 

  25. Hu, S., Zhang, Q., Wang, J., Chen, Z.: A real-time rodent neural interface for deciphering acute pain signals from neuronal ensemble spike activity. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, pp. 93–97. IEEE (2017)

    Google Scholar 

  26. Hu, S., Zhang, Q., Wang, J., Chen, Z.: Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity. J. Neurophysiol. 149, 1394–1410 (2018)

    Article  Google Scholar 

  27. Hu, S., Ciliberti, D., Grosmark, A.D., Michon, F., Ji, D., Penagos, H., Buzsaki, G., Wilson, M.A., Kloosterman, F., Chen, Z.: Real-time readout of large-scale unsorted neural ensemble place codes. Cell Rep. 25, 2635–2642 (2018)

    Article  Google Scholar 

  28. Huang, G., Xiao, P., Hung, Y.S., Iannetti, G.D., Zhang, Z.G., Hu, L.: A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. Neuroimage 81, 283–293 (2013)

    Article  Google Scholar 

  29. Iyer, S.M., Montgommery, K.L., Towne, C., et al.: Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotech. 32, 274–278 (2014)

    Article  Google Scholar 

  30. Iyer, S.M., Vesuna, S., Ramakrishnan, C., Huynh, K., et al.: Optogenetic and chemogenetic strategies for sustained inhibition of pain. Sci. Rep. 6, 30570 (2016)

    Article  Google Scholar 

  31. Koepcke, L., Ashida, G., Kretzberg, J.: Single and multiple change point detection in spike trains: comparison of different CUSUM methods. Front. Syst. Neurosci. 10, 51 (2016)

    Article  Google Scholar 

  32. Kuo, C.C., Yen, C.T.: Comparison of anterior cingulate and primary somatosensory neuronal responses to noxious laser-heat stimuli in conscious, behaving rats. J. Neurophysiol. 94, 1825–1836 (2005)

    Article  Google Scholar 

  33. Lancaster, J., Mano, H., Callan, D., Kawato, M., et al.: Decoding acute pain with combined EEG and physiological data. In: Proceedings of 8th International IEEE/EMBS Conference on Neural Engineering (NER) (2017). https://doi.org/10.1109/NER.2017.8008404

  34. Lee, M., Manders, T.R., Eberle, S.E., et al.: Activation of corticostriatal circuitry relieves chronic neuropathic pain. J. Neurosci. 35, 5247–5259 (2015)

    Article  Google Scholar 

  35. Lotsch, J., Ultsch, A.: Machine learning in pain research. Pain 159, 623–630 (2018)

    Article  Google Scholar 

  36. Macke, J.H., Buesing, L., Sahani, M.: Estimating state and parameters in state 809 space models of spike trains. In: Chen, Z. (ed.) Advanced State Space Methods in Neural and Clinical Data. Cambridge University Press (2015)

    Google Scholar 

  37. Malladi, R., Kalamangalam, G.P., Aazhang, B.: Online Bayesian change point detection algorithms for segmentation of epileptic activity. In: Proceedings of Asilomar Conference on Signals, Systems & Computers, pp. 1833–1837. IEEE (2013)

    Google Scholar 

  38. Mosqueiro, T., Strube-Bloss, M., Tuma, R., Pinto, R., Smith, B.H., Huerta, R.: Non-parametric change point detection for spike trains. In: Proceedings of Annual Conference on Information Sciences and Systems (2016)

    Google Scholar 

  39. Mouraux, A., Iannetti, G.D.: The search for pain biomarker in the human brain. Brain 141, 3290–3307 (2018)

    Article  Google Scholar 

  40. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, MA (2012)

    MATH  Google Scholar 

  41. Paninski, L., Ahmadian, Y., Ferreira, D.G., Koyama, S., Rad, K.R., Vidne, M., Vogelstein, J.T., Wu, W.: A new look at state-space models for neural data. J. Comput. Neurosci. 29, 107–126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pillow, J.W., Ahmadian, Y., Paninski, L.: Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput. 23, 1–45 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Poor, H.V., Hadjiliadis, O.: Quickest Detection. Cambridge University Press (2009)

    Google Scholar 

  44. Rey, H.G., Pedreira, C., Quian Quiroga, R.: Past, present and future of spike sorting techniques. Brain Res. Bull. 119, 106–117 (2015)

    Article  Google Scholar 

  45. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA (2001)

    Google Scholar 

  46. Schulz, E., Zherdin, A., Tiemann, L., Plant, C., Ploner, M.: Decoding an individual’s sensitivity to pain from the multivariate analysis of EEG data. Cereb. Cortex 22, 1118–1123 (2012)

    Article  Google Scholar 

  47. Shirvalkar, P., Veuthey, T.L., Dawes, H.E., Chang, E.F.: Closed-loop deep brain stimulation for refractory chronic pain. Front. Compt. Neurosci. 12, 18 (2018)

    Article  Google Scholar 

  48. Smith, A.C., Brown, E.N.: Estimating a state-space model from point process observations. Neural Comput. 15, 965–991 (2003)

    Article  MATH  Google Scholar 

  49. Sun, G., Wen, Z., Ok, D., Doan, L., Wang, J., Chen, Z.: Detecting acute pain signals from human EEG. J. Neurosci. Methods 347, 108964 (2020)

    Article  Google Scholar 

  50. Truong, C., Oudre, L., Vayatis, N.: Selective review of offline change point detection methods. Sig. Proc. 167, 107299 (2020)

    Article  Google Scholar 

  51. Ung, H., Brown, J.E., Johnson, K.A., Younger, J., Hush, J., Mackey, S.: Multivariate classification of structural MRI data detects chronic low back pain. Cereb. Cortex 24, 1037–1044 (2012)

    Article  Google Scholar 

  52. Urien, L., Xiao, Z., Dale, J., Bauer, E., Chen, Z., Wang, J.: Rate and temporal coding mechanisms in the anterior cingulate cortex for pain anticipation. Sci. Rep. 8, 8298 (2018)

    Article  Google Scholar 

  53. Vierck, C.J., Whitsel, B.L., Favorov, O.V., Brown, A.W., Tommerdahl, M.: Role of primary somatosensory cortex in the coding of pain. Pain 154, 334–344 (2013)

    Article  Google Scholar 

  54. Vijayakumar, V., Case, M., Shirinpour, S., He, B.: Quantifying and characterizing tonic thermal pain across subjects from EEG data using random forest models. IEEE Trans. Biomed. Eng. 64, 2988–2966 (2017)

    Article  Google Scholar 

  55. Wager, T.D., Atlas, L.Y., Lindquist, M.A., Roy, M., Woo, C.-W., Kross, E.: An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013)

    Article  Google Scholar 

  56. Wang, X., Poor, V.: Robust multiuser detection in non-Gaussian channels. IEEE Trans. Sig. Proc. 50, 289–305 (1999)

    Article  Google Scholar 

  57. Wiech, K., Ploner, M., Tracey, I.: Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313 (2008)

    Article  Google Scholar 

  58. Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., Black, M.J.: Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput. 18, 80–118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  59. Xiao, Z., Hu, S., Zhang, Q., Tian, X., Chen, Y., Wang, J., Chen, Z.: Ensembles of change-point detectors: implications for real-time BMI applications. J. Comput. Neurosci. 46, 107–124 (2019)

    Article  MATH  Google Scholar 

  60. Xiao, Z., Martinez, E., Kulkarni, P., Zhang, Q., Hou, Q., Rosenberg, D., Talay, R., Shalot, L., Zhou, H., Wang, J., Chen, Z.: Cortical pain processing in the rat anterior cingulate cortex and primary somatosensory cortex. Front. Cell. Neurosci. 13, 165 (2019)

    Article  Google Scholar 

  61. Zhang, Q., Mander, T.R., Tong, A.P.S., Yang, R., Garg, A., Martinez, E., Zhou, H., Dale, J., Goyal, A., Urien, L., Yang, G., Chen, Z., Wang, J.: Chronic pain induces generalized enhancement of aversion. eLife 6, e25302 (2017)

    Article  Google Scholar 

  62. Zhang, Q., Xiao, Z., Huang, C., Hu, S., Kulkarni, P., Martinez, E., Tong, A.P.S., Garg, A., Zhou, H., Chen, Z., Wang, J.: Local field potential decoding of the onset and intensity of acute thermal pain in rats. Sci. Rep. 8, 8299 (2018)

    Article  Google Scholar 

  63. Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Li, A., Caravan, B.,, Liu, Y., Sun, G., Singh, A., Gould, J.D., Chen, Z., Wang, J.: A prototype closed-loop brain-machine interface for study and treatment of pain. Nat. Biomed. Eng. (2020). https://doi.org/10.1038/s41551-021-00736-7

    Google Scholar 

  64. Zhou, H., Zhang, Q., Martinez, E., et al.: Ketamine reduces aversion in rodent pain models by suppressing hyperactivity of the anterior cingulate cortex. Nat. Commun. 9, 3751 (2018)

    Article  Google Scholar 

  65. Zhou, H., Zhang, Q., Martinez, E., Dale, J., Robinson, E., Huang, D., Wang, J.: A novel neuromodulation strategy to enhance the prefrontal control to treat pain. Mol. Pain 15, 1744806919845739 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The author likes to thank all coauthors who had contributed to previous publications. The work was supported by the NIH grant R01-NS100065 and NSF-CBET grant #1835000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Sage Chen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, Z.S. (2022). Real-Time Detection of Acute Pain Signals Based on Spikes/LFP. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_72-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_72-2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics