Skip to main content

Graph Theory for Brain Signal Processing

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

This chapter introduces the use of graph-theoretic concepts in analyzing brain signals. For didactic purposes, it has been split into three parts: “theory,” “demonstration,” and “examples.” In the first part, we commence by introducing some basic elements from graph theory and stemming algorithmic tools, which can be employed for data-analytic purposes. Next, we describe how these concepts are adapted for handling evolving connectivity and gaining insights into network reorganization. Finally, the notion of signals residing on a given graph is introduced, and elements from the emerging field of graph signal processing (GSP) are provided. The second part serves as a pragmatic demonstration of the tools and techniques described earlier. It is based on analyzing a multi-trial dataset containing single-trial responses from a visual event-related potential (ERP) paradigm. The third part includes examples from the related literature. This chapter ends with a brief outline of the most recent trends in graph theory that are about to shape brain signal processing in the near future and a more general discussion on the relevance of graph-theoretic methodologies for neural recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Stam, C.J., Reijneveld, J.C.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1, 3 (2007). https://doi.org/10.1186/1753-4631-1-3

    Article  Google Scholar 

  2. Bullmore, E.T., Bassett, D.S.: Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7(1), 113–140 (2011). https://doi.org/10.1146/annurev-clinpsy-040510-143934

    Article  Google Scholar 

  3. Sporns, D.O.: Networks of the Brain. MIT Press (2010)

    Book  Google Scholar 

  4. De Vico Fallani, F., Richiardi, J., Chavez, M., Achard, S.: Graph analysis of functional brain networks: practical issues in translational neuroscience. Philos. Trans. R. Soc. B Biol. Sci. 369(1653) (2014). https://doi.org/10.1098/rstb.2013.0521

  5. Fornito, A., Zalesky, A., Bullmore, E.T.: Fundamentals of Brain Network Analysis. Academic (2016)

    Google Scholar 

  6. Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017). https://doi.org/10.1038/nn.4502

    Article  Google Scholar 

  7. Betzel, R.F., Bassett, D.S.: Multi-scale brain networks. NeuroImage. 160, 73–83 (2017). https://doi.org/10.1016/j.neuroimage.2016.11.006

    Article  Google Scholar 

  8. Bassett, D.S., Khambhati, A.N., Grafton, S.T.: Emerging frontiers of neuroengineering: a network science of brain connectivity. Annu. Rev. Biomed. Eng. 19(1), 327–352 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044511

    Article  Google Scholar 

  9. Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2(4), 229–239 (2001). https://doi.org/10.1038/35067550

    Article  Google Scholar 

  10. Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs: frequency analysis. IEEE Trans. Signal Process. 62(12), 3042–3054 (2014). https://doi.org/10.1109/TSP.2014.2321121

    Article  MathSciNet  MATH  Google Scholar 

  11. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013). https://doi.org/10.1109/MSP.2012.2235192

    Article  Google Scholar 

  12. Deco, G., Tononi, G., Boly, M., Kringelbach, M.L.: Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16(7), 430–439 (2015). https://doi.org/10.1038/nrn3963

    Article  Google Scholar 

  13. Van Dijk, K.R.A., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L.: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103(1), 297–321 (2010). https://doi.org/10.1152/jn.00783.2009

    Article  Google Scholar 

  14. Friston, K.J.: Functional and effective connectivity: a review. Brain Connect. 1(1), 13–36 (2011). https://doi.org/10.1089/brain.2011.0008

    Article  MathSciNet  Google Scholar 

  15. Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T.: Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U. S. A. 108(18), 7641–7646 (2011). https://doi.org/10.1073/pnas.1018985108

    Article  Google Scholar 

  16. Kopell, N.J., Gritton, H.J., Whittington, M.A., Kramer, M.A.: Beyond the connectome: the dynome. Neuron. 83(6), 1319–1328 (2014). https://doi.org/10.1016/j.neuron.2014.08.016

    Article  Google Scholar 

  17. Calhoun, V.D., Miller, R., Pearlson, G., Adali, T.: The Chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 84(2), 262–274 (2014). https://doi.org/10.1016/j.neuron.2014.10.015

    Article  Google Scholar 

  18. Preti, M.G., Bolton, T.A., Van De Ville, D.: The dynamic functional connectome: state-of-the-art and perspectives. NeuroImage. 160, 41–54 (2017). https://doi.org/10.1016/j.neuroimage.2016.12.061

    Article  Google Scholar 

  19. Tewarie, P., Liuzzi, L., O’Neill, G.C., Quinn, A.J., Griffa, A., Woolrich, M.W., Stam, C.J., Hillebrand, A., Brookes, M.J.: Tracking dynamic brain networks using high temporal resolution MEG measures of functional connectivity. NeuroImage. 200, 38–50 (2019). https://doi.org/10.1016/j.neuroimage.2019.06.006

    Article  Google Scholar 

  20. Kabbara, A., Khalil, M., O’Neill, G., Dujardin, K., El Traboulsi, Y., Wendling, F., Hassan, M.: Detecting modular brain states in rest and task. Netw. Neurosci. 3(3), 878–901 (2019). https://doi.org/10.1162/netn_a_00090

    Article  Google Scholar 

  21. Mahyari, A.G., Zoltowski, D.M., Bernat, E.M., Aviyente, S.: A tensor decomposition-based approach for detecting dynamic network states from EEG. I.E.E.E. Trans. Biomed. Eng. 64(1), 225–237 (2017). https://doi.org/10.1109/TBME.2016.2553960

    Article  Google Scholar 

  22. Dimitriadis, S.I., Sun, Y., Kwok, K., Laskaris, N.A., Thakor, N., Bezerianos, A.: Cognitive workload assessment based on the Tensorial treatment of EEG estimates of cross-frequency phase interactions. Ann. Biomed. Eng. 43(4), 977–989 (2015). https://doi.org/10.1007/s10439-014-1143-0

    Article  Google Scholar 

  23. Chen, W.K.: Applied Graph Theory: Graphs and Electrical Networks. North-Holland (1971)

    Google Scholar 

  24. Latora, V., Nicosia, V., Russo, G.: Centrality measures. In: Complex Networks, pp. 31–68. Cambridge University Press (2017)

    Chapter  Google Scholar 

  25. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science. 290(5500), 2319–2323 (2000). https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  26. Adamos, D.A., Laskaris, N.A., Kosmidis, E.K., Theophilidis, G.: NASS: an empirical approach to spike sorting with overlap resolution based on a hybrid noise-assisted methodology. J. Neurosci. Methods. 190(1), 129–142 (2010). https://doi.org/10.1016/j.jneumeth.2010.04.018

    Article  Google Scholar 

  27. Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18(1), 54–64 (1969). https://doi.org/10.2307/2346439

    Article  MathSciNet  Google Scholar 

  28. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  29. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  30. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998). https://doi.org/10.1137/S1064827595287997

    Article  MathSciNet  MATH  Google Scholar 

  31. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  32. Adamos, D.A., Laskaris, N.A., Kosmidis, E.K., Theophilidis, G.: Spike sorting based on dominant-sets clustering. In: Bamidis, P.D., Pallikarakis, N. (eds.) IFMBE Proceedings, pp. 5–8. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  33. Adamos, D.A., Laskaris, N.A., Kosmidis, E.K., Theophilidis, G.: In quest of the missing neuron: spike sorting based on dominant-sets clustering. Comput. Methods Prog. Biomed. 107(1), 28–35 (2012). https://doi.org/10.1016/j.cmpb.2011.10.015

    Article  Google Scholar 

  34. Rigas, P., Adamos, D.A., Sigalas, C., Tsakanikas, P., Laskaris, N.A., Skaliora, I.: Spontaneous up states in vitro: a single-metric index of the functional maturation and regional differentiation of the cerebral cortex. Front. Neural Circuits. 9, 59 (2015). https://doi.org/10.3389/fncir.2015.00059

    Article  Google Scholar 

  35. Adamos, D.A., Laskaris, N.A., Micheloyannis, S.: Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening. J. Neural Eng. 15(3) (2018). https://doi.org/10.1088/1741-2552/aaac36

  36. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007). https://doi.org/10.1109/TPAMI.2007.250608

    Article  Google Scholar 

  37. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012). https://doi.org/10.1080/17445760.2012.668546

    Article  Google Scholar 

  38. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012). https://doi.org/10.1016/j.physrep.2012.03.001

    Article  Google Scholar 

  39. Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P.A., Carlsson, G., Glover, G., Reiss, A.L.: Towards a new approach to reveal dynamical organization of the brain using topological data analysis. Nat. Commun. 9(1) (2018). https://doi.org/10.1038/s41467-018-03664-4

  40. Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., Miguel Soares, J., Deco, G., Sousa, N., Kringelbach, M.L.: Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/s41598-017-05425-7

  41. Huang, W., Goldsberry, L., Wymbs, N.F., Grafton, S.T., Bassett, D.S., Ribeiro, A.: Graph frequency analysis of brain signals. IEEE J. Sel. Top. Signal Process. 10(7), 1189–1203 (2016). https://doi.org/10.1109/JSTSP.2016.2600859

    Article  Google Scholar 

  42. Huang, W., Bolton, T.A.W., Medaglia, J.D., Bassett, D.S., Ribeiro, A., Van De Ville, D., Graph Signal, A.: Processing perspective on functional brain imaging. Proc. IEEE. 106(5), 868–885 (2018). https://doi.org/10.1109/JPROC.2018.2798928

    Article  Google Scholar 

  43. Georgiadis, K., Laskaris, N., Nikolopoulos, S., Kompatsiaris, I.: Connectivity steered graph Fourier transform for motor imagery BCI decoding. J. Neural Eng. 16(5), 056021 (2019). https://doi.org/10.1088/1741-2552/ab21fd

    Article  Google Scholar 

  44. Ortega, A., Frossard, P., Kovacevic, J., Moura, J.M.F., Vandergheynst, P.: Graph Signal processing: overview, challenges, and applications. Proc. IEEE. 106(5), 808–828 (2018). https://doi.org/10.1109/JPROC.2018.2820126

    Article  Google Scholar 

  45. Tremblay, N., Gonçalves, P., Borgnat, P.: Design of graph filters and filterbanks. In: Cooperative and Graph Signal Processing, pp. 299–324. Academic (2018)

    Chapter  Google Scholar 

  46. Liparas, D., Dimitriadis, S.I., Laskaris, N.A., Tzelepi, A., Charalambous, K., Angelis, L.: Exploiting the temporal patterning of transient VEP signals: a statistical single-trial methodology with implications to brain-computer interfaces (BCIs). J. Neurosci. Methods. 232, 189–198 (2014). https://doi.org/10.1016/j.jneumeth.2014.04.032

    Article  Google Scholar 

  47. Laskaris, N.A., Ioannides, A.A.: Semantic geodesic maps: a unifying geometrical approach for studying the structure and dynamics of single trial evoked responses. Clin. Neurophysiol. 113(8), 1209–1226 (2002). https://doi.org/10.1016/S1388-2457(02)00124-4

    Article  Google Scholar 

  48. Laskaris, N., Kosmidis, E., Vučinić, D., Homma, R.: Understanding and characterizing olfactory responses: a manifold learning approach based on optical recordings. IEEE Eng. Med. Biol. Mag. 27(2), 69–79 (2008). https://doi.org/10.1109/EMB.2007.913555

    Article  Google Scholar 

  49. Laskaris, N.A., Fotopoulos, S., Ioannides, A.A.: Mining information from event-related recordings. IEEE Signal Process. Mag. 21(3), 66–77 (2004). https://doi.org/10.1109/MSP.2004.1296544

    Article  Google Scholar 

  50. Arieli, A., Sterkin, A., Grinvald, A., Aertsen, A.: Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science. 273(5283), 1868–1871 (1996). https://doi.org/10.1126/science.273.5283.1868

    Article  Google Scholar 

  51. Truccolo, W.A., Ding, M., Knuth, K.H., Nakamura, R., Bressler, S.L.: Trial-to-trial variability of cortical evoked responses: implications for the analysis of functional connectivity. Clin. Neurophysiol. 113(2), 206–226 (2002). https://doi.org/10.1016/S1388-2457(01)00739-8

    Article  Google Scholar 

  52. Laskaris, N.A., Liu, L.C., Ioannides, A.A.: Single-trial variability in early visual neuromagnetic responses: an explorative study based on the regional activation contributing to the N70m peak. NeuroImage. 20(2), 765–783 (2003). https://doi.org/10.1016/S1053-8119(03)00367-7

    Article  Google Scholar 

  53. Laskaris, N.A., Ioannides, A.A.: Exploratory data analysis of evoked response single trials based on minimal spanning tree. Clin. Neurophysiol. 112(4), 698–712 (2001). https://doi.org/10.1016/S1388-2457(00)00560-5

    Article  Google Scholar 

  54. Dimitriadis, S.I., Laskaris, N.A., Tzelepi, A., Economou, G.: Analyzing functional brain connectivity by means of commute times: a new approach and its application to track event-related dynamics. I.E.E.E. Trans. Biomed. Eng. 59(5), 1302–1309 (2012). https://doi.org/10.1109/TBME.2012.2186568

    Article  Google Scholar 

  55. Ioannides, A.A., Dimitriadis, S.I., Saridis, G.A., Voultsidou, M., Poghosyan, V., Liu, L., Laskaris, N.A.: Source space analysis of event-related dynamic reorganization of brain networks. Comput. Math. Methods Med. 2012, 45250 (2012). https://doi.org/10.1155/2012/452503

    Article  MathSciNet  MATH  Google Scholar 

  56. Dimitriadis, S.I., Laskaris, N.A., Tzelepi, A.: On the quantization of time-varying phase synchrony patterns into distinct functional connectivity microstates (FCμstates) in a multi-trial visual ERP paradigm. Brain Topogr. 26(3), 397–409 (2013). https://doi.org/10.1007/s10548-013-0276-z

    Article  Google Scholar 

  57. Dimitriadis, S.I., Laskaris, N.A., Bitzidou, M.P., Tarnanas, I., Tsolaki, M.N.: A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses. Front. Neurosci. 9, 350 (2015). https://doi.org/10.3389/fnins.2015.00350

    Article  Google Scholar 

  58. Georgiadis, K., Laskaris, N., Nikolopoulos, S., Kompatsiaris, I.: Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery BCIs. J. Neuroeng. Rehabil. 15(1) (2018). https://doi.org/10.1186/s12984-018-0431-6

  59. Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 194–208 (1999). https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C

    Google Scholar 

  60. Dimitriadis, S.I., Laskaris, N.A., Tsirka, V., Vourkas, M., Micheloyannis, S., Fotopoulos, S.: Tracking brain dynamics via time-dependent network analysis. J. Neurosci. Methods. 193(1), 145–155 (2010). https://doi.org/10.1016/j.jneumeth.2010.08.027

    Article  Google Scholar 

  61. Gu, S., Yang, M., Medaglia, J.D., Gur, R.C., Gur, R.E., Satterthwaite, T.D., Bassett, D.S.: Functional hypergraph uncovers novel covariant structures over neurodevelopment. Hum. Brain Mapp. 38(8), 3823–3835 (2017). https://doi.org/10.1002/hbm.23631

    Article  Google Scholar 

  62. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science. 328(5980), 876–878 (2010). https://doi.org/10.1126/science.1184819

    Article  MathSciNet  MATH  Google Scholar 

  63. Sizemore, A.E., Bassett, D.S.: Dynamic graph metrics: tutorial, toolbox, and tale. Neuroimage. 180(Part B), 417–427 (2018). https://doi.org/10.1016/j.neuroimage.2017.06.081

    Article  Google Scholar 

  64. Kalofolias, V.: How to learn a graph from smooth signals. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. AISTATS (2016)

    Google Scholar 

  65. Sannino, S., Stramaglia, S., Lacasa, L., Marinazzo, D.: Visibility graphs for fMRI data: multiplex temporal graphs and their modulations across resting-state networks. Netw. Neurosci. 1(3), 208–221 (2017). https://doi.org/10.1162/netn_a_00012

    Article  Google Scholar 

  66. Dimitriadis, S.I., Laskaris, N.A., Del Rio-Portilla, Y., Koudounis, G.C.: Characterizing dynamic functional connectivity across sleep stages from EEG. Brain Topogr. 22(2), 119–133 (2009). https://doi.org/10.1007/s10548-008-0071-4

    Article  Google Scholar 

  67. Dimitriadis, S.I., Laskaris, N.A., Tsirka, V., Vourkas, M., Micheloyannis, S.: An EEG study of brain connectivity dynamics at the resting state. Nonlinear Dyn. Psychol. Life Sci. 16(1), 5–22 (2012)

    Google Scholar 

  68. Dimitrakopoulos, G.N., Kakkos, I., Dai, Z., Wang, H., Sgarbas, K., Thakor, N., Bezerianos, A., Sun, Y.: Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 26(4), 740–749 (2018). https://doi.org/10.1109/TNSRE.2018.2791936

    Article  Google Scholar 

  69. Dimitriadis, S., Sun, Y., Laskaris, N., Thakor, N., Bezerianos, A.: Revealing cross-frequency causal interactions during a mental arithmetic task through symbolic transfer entropy: a novel vector-quantization approach. IEEE Trans. Neural Syst. Rehabil. Eng. 24(10), 1017–1028 (2016). https://doi.org/10.1109/TNSRE.2016.2516107

    Article  Google Scholar 

  70. Kosti, M.V., Georgiadis, K., Adamos, D.A., Laskaris, N., Spinellis, D., Angelis, L.: Towards an affordable brain computer interface for the assessment of programmers’ mental workload. Int. J. Hum. Comput. Stud. 115, 52–66 (2018). https://doi.org/10.1016/j.ijhcs.2018.03.002

    Article  Google Scholar 

  71. Vecchio, F., Miraglia, F., Maria Rossini, P.: Connectome: graph theory application in functional brain network architecture. Clin. Neurophysiol. Pract. 2, 206–213 (2017). https://doi.org/10.1016/j.cnp.2017.09.003

    Article  Google Scholar 

  72. Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale, J.R., Stephenson, M.C., Barnes, G.R., Smith, S.M., Morris, P.G.: Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc. Natl. Acad. Sci. U. S. A. 108(40), 16783–16788 (2011). https://doi.org/10.1073/pnas.1112685108

    Article  Google Scholar 

  73. Marimpis, A., Stavros, D., Dimitrios, A., Nikos, L.: NNMF connectivity microstates: a new approach to represent the dynamic brain coordination. Front. Neuroinform. 10 (2016). https://doi.org/10.3389/conf.fninf.2016.20.00022

  74. Comsa, I.M., Bekinschtein, T.A., Chennu, S.: Transient topographical dynamics of the electroencephalogram predict brain connectivity and behavioural responsiveness during drowsiness. Brain Topogr. 32(2), 315–331 (2019). https://doi.org/10.1007/s10548-018-0689-9

    Article  Google Scholar 

  75. Deco, G., Kringelbach, M.L., Jirsa, V.K., Ritter, P.: The dynamics of resting fluctuations in the brain: Metastability and its dynamical cortical core. Sci. Rep. 7(1), 1–14 (2017). https://doi.org/10.1038/s41598-017-03073-5

    Article  Google Scholar 

  76. Bronstein, M.M., Bruna, J., Lecun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418

    Article  Google Scholar 

  77. Kalaganis, F.P., Laskaris, N.A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: A data augmentation scheme for geometric deep learning in personalized brain-computer interfaces. IEEE Access. 8, 162218 (2020). https://doi.org/10.1109/ACCESS.2020.3021580

    Article  Google Scholar 

  78. Du, H., Xia, M., Zhao, K., Liao, X., Yang, H., Wang, Y., He, Y.: PAGANI toolkit: parallel graph-theoretical analysis package for brain network big data. Hum. Brain Mapp. 39(5), 1869–1885 (2018). https://doi.org/10.1002/hbm.23996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Adamos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Laskaris, N., Adamos, D., Bezerianos, A. (2021). Graph Theory for Brain Signal Processing. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_66-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_66-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics