Skip to main content

Distributed Neural Interfaces: Challenges and Trends in Scaling Implantable Technology

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Current implantable neural interfaces, both clinically available solutions and research tools, rely on a limited number of implanted devices (from one to few units). This factor, aside from the obvious spatial resolution limitations, does not conform to the paradigm of the brain as a massively parallel computational system and creates a bottleneck in the amount of information that could be exchanged between the brain and an external processing unit. This issue has fuelled recent research efforts towards the study of distributed neural interfaces, systems that depend on a network of implanted nodes. Such configuration allows to spread of the overall complexity across multiple devices, which can now be more easily scaled down in size and individual power consumption, improving their conformity with the surrounding tissue, which is a major concern in current monolithic solutions. However, this architecture brings a new set of challenges ranging from the optimization of ultra-low-power electronics, through the formulation of a wireless transmission scheme for efficient power delivery and data transfer to the investigation of novel materials and methods for the fabrication of micro-scale, long-term reliable implants. This chapter outlines state of the art and describes design considerations for the future autonomous, wireless distributed neural implants. Aspects of miniaturization and chronic stability of devices including materials choice, implantation procedure, packaging strategies and microelectrode types are described, alongside a discussion on different modalities to achieve wireless power transfer and data telemetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Greenwald, E., Masters, M.R., Thakor, N.V.: Implantable neurotechnologies: bidirectional neural interfacesapplications and vlsi circuit implementations. Med. Biol. Eng. Comput. 54(1), 1–17 (2016)

    Article  Google Scholar 

  2. Crowson, M.G., Semenov, Y.R., Tucci, D.L., Niparko, J.K.: Quality of life and cost-effectiveness of cochlear implants: a narrative review. Audiol. Neurotol. 22(4–5), 236–258 (2017)

    Article  Google Scholar 

  3. Miocinovic S., Somayajula S., Chitnis S., Vitek J.L.: History, applications, and mechanisms of deep brainstimulation. JAMA Neurol. 70, 163–171 (2013)

    Google Scholar 

  4. Obidin, N., Tasnim, F., Dagdeviren, C.: The future of neuroimplantable devices: A materials science and regulatory perspective. Adv. Mater. 32(15), 1901482 (2020)

    Article  Google Scholar 

  5. Wolpaw, J., Wolpaw, E.W.: Brain-Computer Interfaces: Principles and Practice. OUP, New York (2012)

    Book  Google Scholar 

  6. Kozai, T.D.Y.: The history and horizons of microscale neural interfaces. Micromachines. 9(9), 445 (2018)

    Article  Google Scholar 

  7. Laiwalla, F., Nurmikko, A.: Future of neural interfaces. In: Neural Interface: Frontiers and Applications, pp. 225–241. Springer, Singapore (2019)

    Google Scholar 

  8. Szostak, K.M., Grand, L., Constandinou, T.G.: Neural interfaces for intracortical recording: Requirements, fabrication methods, and characteristics. Front. Neurosci. 11, 665 (2017)

    Article  Google Scholar 

  9. Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G., Turolla, A., Piccione, F., Birbaumer, N.: Brain-computer interface in stroke: A review of progress. Clin. EEG Neurosci. 42(4), 245–252 (2011)

    Article  Google Scholar 

  10. Jorfi, M., Skousen, J.L., Weder, C., Capadona, J.R.: Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J. Neural Eng. 12(1), 011001 (2014)

    Article  Google Scholar 

  11. Salatino, J.W., Ludwig, K.A., Kozai, T.D.Y., Purcell, E.K.: Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1(11), 862–877 (2017)

    Article  Google Scholar 

  12. Yoshida Kozai, T.D., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K.L., Lahann, J., Kotov, N.A., Kipke, D.R.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11(12), 1065–1073 (2012)

    Article  Google Scholar 

  13. Skousen, J.L., Merriam, S.M.E., Srivannavit, O., Perlin, G., Wise, K.D., Tresco, P.A.: Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays. Prog. Brain Res. 194, 167–180 (2011). Elsevier

    Article  Google Scholar 

  14. G¨allentoft, L., Pettersson, L.M.E., Danielsen, N., Schouenborg, J., Prinz, C.N., Linsmeier, C.E.: Size-dependent long-term tissue response to biostable nanowires in the brain. Biomaterials. 42, 172–183 (2015)

    Article  Google Scholar 

  15. Gill, E.C., Antalek, J., Kimock, F.M., Nasiatka, P.J., McIntosh, B.P., Tanguay, A.R., Weiland, J.D.: High-density feedthrough technology for hermetic biomedical micropackaging. MRS Online Proceedings Library Archive, 1572 (2013)

    Google Scholar 

  16. Langenmair, M., Martens, J., Gierthmuehlen, M., Plachta, D.T.T., Stieglitz, T.: Low temperature approach for high density electrical feedthroughs for neural implants using maskless fabrication techniques. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, pp. 2933–2936 (2018)

    Google Scholar 

  17. Clement, C.: The Human Body: A Special Environment, pp. 97–200. Springer International Publishing, Cham (2019)

    Google Scholar 

  18. Koch, J., Schuettler, M., Pasluosta, C., Stieglitz, T.: Electrical connectors for neural implants: Design, state of the art and future challenges of an underestimated component. J. Neural Eng. 16(6), 061002 (2019)

    Article  Google Scholar 

  19. NeuroNexus. Matrix array (small animal). NeuroNexus. https://neuronexus.com/products/electrode-arrays/3D-probes/small-animal-matrix-arrays

  20. Perlin, G.E., Wise, K.D.: An ultra compact integrated front end for wireless neural recording microsystems. J. Microelectromech. Syst. 19(6), 1409–1421 (2010)

    Article  Google Scholar 

  21. Barrese, J.C., Rao, N., Paroo, K., Triebwasser, C., Vargas-Irwin, C., Franquemont, L., Donoghue, J.P.: Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10(6), 066014 (2013)

    Article  Google Scholar 

  22. Seo, D., Neely, R.M., Shen, K., Singhal, U., Alon, E., Rabaey, J.M., Carmena, J.M., Maharbiz, M.M.: Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron. 91(3), 529–539 (2016)

    Article  Google Scholar 

  23. Yeon, P., Mirbozorgi, S., Ash, B., Eckhardt, H., Ghovanloo, M.: Fabrication and microassembly of a mm-sized floating probe for a distributed wireless neural interface. Micromachines. 7(9), 154 (2016)

    Article  Google Scholar 

  24. Leung, V.W., Lee, J., Li, S., Yu, S., Kilfovle, C., Larson, L., Nurmikko, A., Laiwalla, F.: A CMOS distributed sensor system for high-density wireless neural implants for brain-machine interfaces. In: ESSCIRC 2018-IEEE 44th European Solid State Circuits Conference (ESSCIRC), pp. 230–233. IEEE (2018)

    Chapter  Google Scholar 

  25. Marin, C., Fernandez, E.: Biocompatibility of intracortical microelectrodes: Current status and future prospects. Front. Neuroeng. 3, 8 (2010)

    Article  Google Scholar 

  26. Fattahi, P., Yang, G., Kim, G., Abidian, M.R.: A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–1885 (2014)

    Article  Google Scholar 

  27. Kotov, N.A., Winter, J.O., Clements, I.P., Jan, E., Timko, B.P., Campidelli, S., Pathak, S., Mazzatenta, A., Lieber, C.M., Prato, M., et al.: Nanomaterials for neural interfaces. Adv. Mater. 21(40), 3970–4004 (2009)

    Article  Google Scholar 

  28. Polikov, V.S., Tresco, P.A., Reichert, W.M.: Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods. 148(1), 1–18 (2005)

    Article  Google Scholar 

  29. Robinson, F.R., Johnson, M.T.: Histopathological studies of tissue reactions to various metals implanted in cat brains. Technical report. Aeronautical Systems Division Wright-Patterson AFB Ohio Aerospace Medical Division (1961)

    Google Scholar 

  30. Neves, H.P.: Materials for implantable systems. In: Implantable Sensor Systems for Medical Applications, Woodhead Publishing Limited, pp. 3–38. Elsevier, Cambridge (2013)

    Google Scholar 

  31. Ahn, S.-H., Jeong, J., Kim, S.J.: Emerging encapsulation technologies for long-term reliability of microfabricated implantable devices. Micromachines. 10(8), 508 (2019)

    Article  Google Scholar 

  32. Wolf, P.D., Reichert, W.M.: Thermal considerations for the design of an implanted cortical brain–machine interface (bmi). In: Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment, pp. 33–38. CRC Press/Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  33. Stieglitz, T.: Manufacturing, assembling and packaging of miniaturized neural implants. Microsyst. Technol. 16(5), 723–734 (2010)

    Article  Google Scholar 

  34. Karumbaiah, L., Saxena, T., Carlson, D., Patil, K., Patkar, R., Gaupp, E.A., Betancur, M., Stanley, G.B., Carin, L., Bellamkonda, R.V.: Relationship between intracortical electrode design and chronic recording function. Biomaterials. 34(33), 8061–8074 (2013)

    Article  Google Scholar 

  35. Köhler, P., Wolff, A., Ejserholm, F., Wallman, L., Schouenborg, J., Linsmeier, C.E.: Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants. PLoS One. 10(3), e0119340 (2015)

    Article  Google Scholar 

  36. Du, Z.J., Kolarcik, C.L., Kozai, T.D.Y., Luebben, S.D., Sapp, S.A., Zheng, X.S., Nabity, J.A., Cui, X.T.: Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomater. 53, 46–58 (2017)

    Article  Google Scholar 

  37. Yoshida Kozai, T.D., Kipke, D.R.: Insertion shuttle with carboxyl terminated selfassembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Methods. 184(2), 199–205 (2009)

    Article  Google Scholar 

  38. Zhang, H., Patel, P.R., Xie, Z., Swanson, S.D., Wang, X., Kotov, N.A.: Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite. ACS Nano. 7(9), 7619–7629 (2013)

    Article  Google Scholar 

  39. Weltman, A., Yoo, J., Meng, E.: Flexible, penetrating brain probes enabled by advances in polymer microfabrication. Micromachines. 7(10), 180 (2016)

    Article  Google Scholar 

  40. Felix, S.H., Shah, K.G., Tolosa, V.M., Sheth, H.J., Tooker, A.C., Delima, T.L., Jadhav, S.P., Frank, L.M., Pannu, S.S.: Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable adhesive. J. Vis. Exp. 79, e50609 (2013)

    Google Scholar 

  41. Pas, J., Rutz, A.L., Quilichini, P.P., Slezia, A., Ghestem, A., Kaszas, A., Donahue, M.J., Curto, V.F., O’Connor, R.P., Bernard, C., et al.: A bilayered pva/plga-bioresorbable shuttle to improve the implantation of flexible neural probes. J. Neural Eng. 15(6), 065001 (2018)

    Article  Google Scholar 

  42. Metallo, C., Trimmer, B.A.: Silk coating as a novel delivery system and reversible adhesive for stiffening and shaping flexible probes. J. Biol. Methods. 2(1), e13 (2015)

    Article  Google Scholar 

  43. Musk, E., et al.: An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21(10), e16194 (2019)

    Article  Google Scholar 

  44. Zhang, S., Wang, C., Gao, H., Yu, C., Yan, Q., Lu, Y., Tao, Z., Linghu, C., Chen, Z., Xu, K., et al.: A removable insertion shuttle for ultraflexible neural probe implantation with stable chronic brain electrophysiological recording. Adv. Mater. Interfaces. 7(6), 1901775 (2020)

    Article  Google Scholar 

  45. Xiang, Z., Yen, S.-C., Xue, N., Sun, T., Tsang, W.M., Zhang, S., Liao, L.-D., Thakor, N.V., Lee, C.: Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle. J. Micromech. Microeng. 24(6), 065015 (2014)

    Article  Google Scholar 

  46. Sigurdsson, S.A., Yu, Z., Lee, J., Nurmikko, A.: A method for large scale implantation of 3d microdevice ensembles into brain and soft tissue. bioRxiv (2020)

    Google Scholar 

  47. Luan, L., Wei, X., Zhao, Z., Siegel, J.J., Potnis, O., Tuppen, C.A., Lin, S., Kazmi, S., Fowler, R.A., Holloway, S., et al.: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci. Adv. 3(2), e1601966 (2017)

    Article  Google Scholar 

  48. Arafat, M.A., Rubin, L.N., Jefferys, J.G.R., Irazoqui, P.P.: A method of flexible micro-wire electrode insertion in rodent for chronic neural recording and a device for electrode insertion. IEEE Trans. Neural Syst. Rehabil. Eng. 27(9), 1724–1731 (2019)

    Article  Google Scholar 

  49. Cheung, K.C.: Implantable microscale neural interfaces. Biomed. Microdevices. 9(6), 923–938 (2007)

    Article  MathSciNet  Google Scholar 

  50. Cavuto, M.L., Constandinou, T.G.: Investigation of insertion method to achieve chronic recording stability of a semi-rigid implantable neural probe. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 665–669. IEEE (2019)

    Chapter  Google Scholar 

  51. Montgomery, K.L., Yeh, A.J., Ho, J.S., Tsao, V., Iyer, S.M., Grosenick, L., Ferenczi, E.A., Tanabe, Y., Deisseroth, K., Delp, S.L., et al.: Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods. 12(10), 969 (2015)

    Article  Google Scholar 

  52. Delbeke, J., Hoffman, L., Mols, K., Braeken, D., Prodanov, D.: And then there was light: perspectives of optogenetics for deep brain stimulation and neuromodulation. Front. Neurosci. 11, 663 (2017)

    Article  Google Scholar 

  53. Jeong, J., Laiwalla, F., Lee, J., Ritasalo, R., Pudas, M., Larson, L., Leung, V., Nurmikko, A.: Conformal hermetic sealing of wireless microelectronic implantable chiplets by multilayered atomic layer deposition (ald). Adv. Funct. Mater. 29(5), 1806440 (2019)

    Article  Google Scholar 

  54. Neely, R.M., Piech, D.K., Santacruz, S.R., Maharbiz, M.M., Carmena, J.M.: Recent advances in neural dust: Towards a neural interface platform. Curr. Opin. Neurobiol. 50, 64–71 (2018)

    Article  Google Scholar 

  55. Krüger, J., Caruana, F., Rizzolatti, G., et al.: Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode. Front. Neuroeng. 3, 6 (2010)

    Google Scholar 

  56. Szostak, K.M., Mazza, F., Maslik, M., Leene, L.B., Feng, P., Constandinou, T.G.: Microwire-cmos integration of mm-scale neural probes for chronic local field potential recording. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2017)

    Google Scholar 

  57. Charthad, J., Chang, T.C., Liu, Z., Sawaby, A., Weber, M.J., Baker, S., Gore, F., Felt, S.A., Arbabian, A.: A mm-sized wireless implantable device for electrical stimulation of peripheral nerves. IEEE Trans. Biomed. Circuits Syst. 12(2), 257–270 (2018)

    Article  Google Scholar 

  58. Ahmadi, N., Cavuto, M.L., Feng, P., Leene, L.B., Maslik, M., Mazza, F., Savolainen, O., Szostak, K.M., Bouganis, C.-S., Ekanayake, J., et al.: Towards a distributed, chronically-implantable neural interface. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 719–724. IEEE (2019)

    Chapter  Google Scholar 

  59. Misra, A., Burke, J.F., Ramayya, A.G., Jacobs, J., Sperling, M.R., Moxon, K.A., Kahana, M.J., Evans, J.J., Sharan, A.D.: Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe. J. Neural Eng. 11(2), 026013 (2014)

    Article  Google Scholar 

  60. Graham, A.H.D., Robbins, J., Bowen, C.R., Taylor, J.: Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors. Sensors. 11(5), 4943–4971 (2011)

    Article  Google Scholar 

  61. Najafi, K.: Packaging of implantable microsystems. In: 2007 IEEE SENSORS, pp. 58–63. IEEE (2007)

    Chapter  Google Scholar 

  62. Balke, T., Völker, B., Schenk, H., Radu, I., Reiche, M.: Wafer bonding for optical mems, Proc. ECS, PV2005-02, pp. 184–193 (2005)

    Google Scholar 

  63. Robblee, L.S., Rose, T.L.: Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation. In: Agnew, W.F., McCreery, D.B. (Eds.), Neural Prostheses: Fundamental Studies, Prentice Hall Biophysics and Bioengineering Series. Prentice Hall, Englewood Cliffs, pp 25–66 (1990)

    Google Scholar 

  64. Graham, A.H.D., Bowen, C.R., Taylor, J., Robbins, J.: Neuronal cell biocompatibility and adhesion to modified CMOS electrodes. Biomed. Microdevices. 11(5), 1091 (2009)

    Article  Google Scholar 

  65. Shaw, C.A., Tomljenovic, L.: Aluminum in the central nervous system (CNS): Toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol. Res. 56(2–3), 304–316 (2013)

    Article  Google Scholar 

  66. Khan, W., Jia, Y., Madi, F., Weber, A., Ghovanloo, M., Li, W.: A miniaturized, wirelessly-powered, reflector-coupled single channel opto neurostimulator. In: 2018 IEEE Micro Electro Mechanical Systems (MEMS), pp. 174–177. IEEE (2018)

    Chapter  Google Scholar 

  67. Chang, T.C., L Wang, M., Charthad, J., J Weber, M., Arbabian, A.: 27.7 a 30.5 mm 3 fully packaged implantable device with duplex ultrasonic data and power links achieving 95kb/s with¡ 10–4 ber at 8.5 cm depth. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 460–461. IEEE (2017)

    Chapter  Google Scholar 

  68. Morales, J.M.H.: Evaluating biocompatible barrier films as encapsulants of medical micro devices. Ph.D. thesis, Universite Grenoble Alpes (2015)

    Google Scholar 

  69. Maloney, J.M., Lipka, S.A., Baldwin, S.P.: In vivo biostability of cvd silicon oxide and silicon nitride films. MRS Online Proceedings Library Archive, 872 (2005)

    Google Scholar 

  70. Vanhoestenberghe, A., Donaldson, N.: Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. J. Neural Eng. 10(3), 031002 (2013)

    Article  Google Scholar 

  71. Feng, P., Yeon, P., Cheng, Y., Ghovanloo, M., Constandinou, T.G.: Chip-scale coils for millimeter-sized bio-implants. IEEE Trans. Biomed. Circuits Syst. 99, 1–12 (2018)

    Google Scholar 

  72. Nagarkar, K., Hou, X., Stoffel, N., Davis, E., Ashe, J., Borton, D.: Micro-hermetic packaging technology for active implantable neural interfaces. In: 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), pp. 218–223. IEEE (2017)

    Chapter  Google Scholar 

  73. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science. 317(5834), 83–86 (2007)

    Article  MathSciNet  Google Scholar 

  74. Kiani, M., Ghovanloo, M.: The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission. IEEE Trans. Circuits Syst. I: Regul. Pap. 59(9), 2065–2074 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. Lo, Y., Kuan, Y., Culaclii, S., Kim, B., Wang, P., Chang, C., Massachi, J.A., Zhu, M., Chen, K., Gad, P., Edgerton, V.R., Liu, W.: A fully integrated wireless SoC for motor function recovery after spinal cord injury. IEEE Trans. Biomed. Circuits Syst. 11(3), 497–509 (2017)

    Article  Google Scholar 

  76. IEEE. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.1–2005 (Revision of IEEE Std C95.1–1991), pp 1–238 (2006)

    Google Scholar 

  77. Food and Drug Administration. Information for manufacturers seeking market clearance of diagnostic ultrasound systems and transducers. Food and Drug Administration, pp 1–64 (September 2008). Accessed 30 Dec 2019

    Google Scholar 

  78. Mano, N.: A 280 μWcm−2 biofuel cell operating at low glucose concentration. Chem. Commun. 19, 2221–2223 (2008)

    Article  Google Scholar 

  79. Roseman, J.M., Lin, J., Ramakrishnan, S., Rosenstein, J.K., Shepard, K.L.: Hybrid integrated biological-solid-state system powered with adenosine triphosphate. Nature. 6, 10070 (2015)

    Google Scholar 

  80. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 413(6856), 597–602 (2001)

    Article  Google Scholar 

  81. Yoon, E.-J., Park, J.-T., Chong-Gun, Y.: Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications. Front. Inf. Technol. Electron. Eng. 19(2), 285–296 (2018)

    Article  Google Scholar 

  82. Shi, B., Li, Z., Fan, Y.: Implantable energy-harvesting devices. Adv. Mater. 30(44), 1801511 (2018)

    Article  Google Scholar 

  83. Katic, J., Rodriguez, S., Rusu, A.: A high-efficiency energy harvesting interface for implanted biofuel cell and thermal harvesters. IEEE Trans. Power Electron. 33(5), 4125–4134 (2018)

    Article  Google Scholar 

  84. Etemadrezaei, M.: Chapter 22 – Wireless power transfer. In: Rashid, M.H. (ed.) Power Electronics Handbook, 4th edn, pp. 711–722. Butterworth-Heinemann, Oxford (2018)

    Google Scholar 

  85. Tran, L.-G., Cha, H.-K., Park, W.-T.: RF power harvesting: A review on designing methodologies and applications. Micro Nano Syst. Lett. 5(1), 14 (2017)

    Article  Google Scholar 

  86. Ouda, M.H., Arsalan, M., Marnat, L., Shamim, A., Salama, K.N.: 5.2-GHz RF power harvester in 0.18-μm CMOS for implantable intraocular pressure monitoring. IEEE Trans. Microwave Theory Tech. 61(5), 2177–2184 (2013)

    Article  Google Scholar 

  87. Kiani, M., Ghovanloo, M.: A figure-of-merit for designing high-performance inductive power transmission links. IEEE Trans. Ind. Electron. 60(11), 5292–5305 (2013)

    Article  Google Scholar 

  88. Ahn, D., Ghovanloo, M.: Optimal design of wireless power transmission links for millimeter-sized biomedical implants. IEEE Trans. Biomed. Circuits Syst. 10(1), 125–137 (2016)

    Article  Google Scholar 

  89. Ho, J.S., Yeh, A.J., Neofytou, E., Kim, S., Tanabe, Y., Patlolla, B., Beygui, R.E., Poon, A.S.Y.: Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. 111(22), 7974–7979 (2014)

    Article  Google Scholar 

  90. Khalifa, A., Liu, Y., Karimi, Y., Wang, Q., Eisape, A., Stanaevi, M., Thakor, N., Bao, Z., Etienne-Cummings, R.: The microbead: A 0.009 mm3 implantable wireless neural stimulator. IEEE Trans. Biomed. Circuits Syst. 13(5), 971–985 (2019)

    Article  Google Scholar 

  91. Lee, J., Mok, E., Huang, J., Cui, L., Lee, A., Leung, V., Mercier, P., Shellhammer, S., Larson, L., Asbeck, P., Rao, R., Song, Y., Nurmikko, A., Laiwalla, F.: An implantable wireless network of distributed microscale sensors for neural applications. In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, p 871–874 (March 2019)

    Google Scholar 

  92. Beauchamp, M.S., Beurlot, M.R., Fava, E., Nath, A.R., Parikh, N.A., Saad, Z.S., Bortfeld, H., Oghalai, J.S.: The developmental trajectory of brain-scalp distance from birth through childhood: Implications for functional neuroimaging. PLOS One. 6(9), 1–9 (2011)

    Article  Google Scholar 

  93. Jow, U., Ghovanloo, M.: Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission. IEEE Trans. Biomed. Circuits Syst. 1(3), 193–202 (2007)

    Article  Google Scholar 

  94. Ho, J.S., Kim, S., Poon, A.S.Y.: Midfield wireless powering for implantable systems. Proc. IEEE. 101(6), 1369–1378 (2013)

    Article  Google Scholar 

  95. Yeon, P., Mirbozorgi, S.A., Lim, J., Ghovanloo, M.: Feasibility study on active back telemetry and power transmission through an inductive link for millimeter-sized biomedical implants. IEEE Trans. Biomed. Circuits Syst. 11(6), 1366–1376 (2017)

    Article  Google Scholar 

  96. Wolf, P.D.: Thermal considerations for the design of an implanted cortical brainmachine interface (bmi). In: Raton, B. (ed.) Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment, chapter 3, pp. 63–86. CRC Press Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  97. Agarwal, K., Jegadeesan, R., Guo, Y., Thakor, N.V.: Wireless power transfer strategies for implantable bioelectronics. IEEE Rev. Biomed. Eng. 10, 136–161 (2017)

    Article  Google Scholar 

  98. Zargham, M., Gulak, P.G.: Fully integrated on-chip coil in 0.13 μm CMOS for wireless power transfer through biological media. IEEE Trans. Biomed. Circuits Syst. 9(2), 259–271 (2015)

    Article  Google Scholar 

  99. Mark, M., Bjrninen, T., Ukkonen, L., Sydnheimo, L., Rabaey, J.M.: SAR reduction and link optimization for mm-size remotely powered wireless implants using segmented loop antennas. In 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Phoenix, pp. 7–10 (Jan 2011)

    Google Scholar 

  100. Royet, A.S., Michel, J.P., Reig, B., Pornin, J.L., Ranaivoniarivo, M., Robain, B., de Person, P., Uren, G.: Design of optimized high Q inductors on SOI substrates for RF ICs. In: 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, p 324–327 (2016)

    Google Scholar 

  101. Park, J., Kim, C., Akinin, A., Ha, S., Cauwenberghs, G., Mercier, P.P.: Wireless powering of mm-scale fully-on-chip neural interfaces. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), Turin, pp. 1–4 (Oct 2017)

    Google Scholar 

  102. Jow, U., Ghovanloo, M.: Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Trans. Biomed. Circuits Syst. 3(5), 339–347 (2009)

    Article  Google Scholar 

  103. Kim, C., Park, J., Ha, S., Akinin, A., Kubendran, R., Mercier, P.P., Cauwenberghs, G.: A 3 mm × 3 mm fully integrated wireless power receiver and neural interface system-on-chip. IEEE Trans. Biomed. Circuits Syst. 13, 1 (2019)

    Article  Google Scholar 

  104. Mirbozorgi, S.A., Yeon, P., Ghovanloo, M.: Robust wireless power transmission to mm-sized free-floating distributed implants. IEEE Trans. Biomed. Circuits Syst. 11(3), 692–702 (2017)

    Article  Google Scholar 

  105. Lee, B., Ahn, D., Ghovanloo, M.: Three-phase time-multiplexed planar power transmission to distributed implants. IEEE J. Emerg. Sel. Top. Power Electron. 4(1), 263–272 (2016)

    Article  Google Scholar 

  106. Yeon, P., Mirbozorgi, S.A., Ghovanloo, M.: Optimal design of a 3-coil inductive link for millimeter-sized biomedical implants. In: 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, China, pp. 396–399 (2016)

    Google Scholar 

  107. Karimi, Y., Khalifa, A., Montlouis, W., Stanaevi, M., Etienne-Cummings, R.: Coil array design for maximizing wireless power transfer to sub-mm sized implantable devices. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4 (Oct 2017)

    Google Scholar 

  108. Lee, J., Laiwalla, F., Jeong, J., Kilfoyle, C., Larson, L., Nurmikko, A., Li, S., Yu, S., Leung, V.W.: Wireless power and data link for ensembles of sub-mm scale implantable sensors near 1GHz. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4 (Oct 2018)

    Google Scholar 

  109. Troyk, P., Bredeson, S., Cogan, S., Romero-Ortega, M., Suh, S., Hu, Z., Kanneganti, A., Granja-Vazquez, R., Seifert, J., Bak, M.: In-vivo tests of a 16-channel implantable wireless neural stimulator. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pages 474–477, April 2015

    Google Scholar 

  110. Troyk, P.R., Bradley, D., Bak, M., Cogan, S., Erickson, R., Hu, Z., Kufta, C., McCreery, D., Schmidt, E., Sung, S., Towle, V.: Intracortical visual prosthesis research – Approach and progress. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 7376–7379 (Jan 2005)

    Google Scholar 

  111. Chang, S.-I., Park, S.-Y., Yoon, E.: Minimally-invasive neural interface for distributed wireless electrocorticogram recording systems. Sensors. 18(1):263 (2018)

    Google Scholar 

  112. Mirbozorgi, S.A., Bahrami, H., Sawan, M., Gosselin, B.: A smart cage with uniform wireless power distribution in 3D for enabling long-term experiments with freely moving animals. IEEE Trans. BioCAS. 10(2), 424--434 (2016)

    Google Scholar 

  113. Jia, Y., Mirbozorgi, S.A., Zhang, P., Inan, O.T., Li, W., Ghovanloo, M.: A dual-band wireless power transmission system for evaluating mm-sized implants. IEEE Trans. Biomed. Circuits Syst. 13(4), 595--607 (2019)

    Article  Google Scholar 

  114. Park, S.I., Brenner, D.S., Shin, G., Morgan, C.D., Copits, B.A., Chung, H.U., Pullen, M.Y., Noh, K.N., Davidson, S., Oh, S.J., Yoon, J., Jang, K.-I., Samineni, V.K., Norman, M., Grajales-Reyes, J.G., Vogt, S.K., Sundaram, S.S., Wilson, K.M., Ha, J.S., Xu, R., Pan, T., Kim, T., Huang, Y., Montana, M.C., Golden, J.P., Bruchas, M.R., Gereau, R.W., Rogers, J.A.: Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33(12), 1280--1286 (2015)

    Article  Google Scholar 

  115. Feng, P., Maslik, M., Constandinou, T.G.: Em-lens enhanced power transfer and multinode data transmission for implantable medical devices. In: 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, pp. 1--4 (2019)

    Google Scholar 

  116. Leene, L.B., Maslik, M., Feng, P., Szostak, K.M., Mazza, F., Constandinou, T.G.: Autonomous SoC for neural local field potential recording in mm-scale wireless implants. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, pp. 1--5 (May 2018)

    Google Scholar 

  117. Lipworth, G., Ensworth, J., Seetharam, K., Huang, D., Lee, J.S., Schmalenberg, P., Nomura, T., Reynolds, M.S., Smith, D.R., Urzhumov, Y.: Magnetic metamaterial superlens for increased range wireless power transfer. Sci. Rep. 4(1), 3642 (2014)

    Article  Google Scholar 

  118. Kiani, M., Ghovanloo, M.: A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. IEEE Trans. Biomed. Circuits Syst. 9(1), 1--11 (2015)

    Article  Google Scholar 

  119. Wang, M.L., Baltsavias, S., Chang, T.C., Weber, M.J., Charthad, J., Arbabian, A.: Wireless data links for next-generation networked micro-implantables. In: 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, pp. 1--9 (Apr 2018)

    Google Scholar 

  120. Ozeri, S., Shmilovitz, D.: Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics. 50(6), 556--566 (2010)

    Article  Google Scholar 

  121. Meng, H., Sahin, M.: An electroacoustic recording device for wireless sensing of neural signals. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, pp. 3086--3088 (July 2013)

    Google Scholar 

  122. Taalla, R.V., Arefin, M.S., Kaynak, A., Kouzani, A.Z.: A review on miniaturized ultrasonic wireless power transfer to implantable medical devices. IEEE Access. 7, 2092--2106 (2019)

    Article  Google Scholar 

  123. Charthad, J., Weber, M.J., Chang, T.C., Arbabian, A.: A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J. Solid State Circuits. 50(8), 1741--1753 (2015)

    Article  Google Scholar 

  124. Chang, T.C., Weber, M.J., Charthad, J., Baltsavias, S., Arbabian, A.: End-to-end design of efficient ultrasonic power links for scaling towards submillimeter implantable receivers. IEEE Trans. Biomed. Circuits Syst. 12(5), 1100--1111 (2018)

    Article  Google Scholar 

  125. Maleki, T., Cao, N., Song, S.H., Kao, C., Ko, S., Ziaie, B.: An ultrasonically powered implantable micro-oxygen generator (IMOG). IEEE Trans. Biomed. Eng. 58(11), 3104--3111 (2011)

    Article  Google Scholar 

  126. Ayazian, S., Hassibi, A.: Delivering optical power to subcutaneous implanted devices. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, pp. 2874--2877 (Aug 2011)

    Google Scholar 

  127. Lee, S., Cortese, A.J., Gandhi, A.P., Agger, E.R., McEuen, P.L., Molnar, A.C.: A 250 μm × 57 μm microscale opto-electronically transduced electrodes (MOTEs) for neural recording. IEEE Trans. Biomed. Circuits Syst. 12(6), 1256--1266 (2018)

    Article  Google Scholar 

  128. Mujeeb-U-Rahman, M., Adalian, D., Chang, C.-F., Scherer, A.: Optical power transfer and communication methods for wireless implantable sensing platforms. J. Biomed. Opt. 20(9), 1--9 (2015)

    Article  Google Scholar 

  129. Das, R., Moradi, F., Heidari, H.: Biointegrated and wirelessly powered implantable brain devices: A review. IEEE Trans. Biomed. Circuits Syst. 14, 343--358 (2020)

    Article  Google Scholar 

  130. Ash, C., Dubec, M., Donne, K., Bashford, T.: Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32(8), 1909--1918 (2017)

    Article  Google Scholar 

  131. Ebrazeh, A., Mohseni, P.: 30 pJ/b, 67 Mbps, centimeter-to-meter range data telemetry with an IR-UWB wireless link. IEEE Trans. Biomed. Circuits Syst. 9(3), 362--369 (2015)

    Article  Google Scholar 

  132. Inanlou, F., Kiani, M., Ghovanloo, M.: A 10.2 Mbps pulse harmonic modulation based transceiver for implantable medical devices. IEEE J. Solid State Circuits. 46(6), 1296--1306 (2011)

    Article  Google Scholar 

  133. Kuan, Y., Lo, Y., Kim, Y., Chang, M.F., Liu, W.: Wireless gigabit data telemetry for large-scale neural recording. IEEE J. Biomed. Health Inform. 19(3), 949--957 (2015)

    Google Scholar 

  134. Jiang, D., Cirmirakis, D., Schormans, M., Perkins, T.A., Donaldson, N., Demosthenous, A.: An integrated passive phase-shift keying modulator for biomedical implants with power telemetry over a single inductive link. IEEE Trans. Biomed. Circuits Syst. 11(1), 64--77 (2017)

    Article  Google Scholar 

  135. Leene, L.B., Luan, S., Constandinou, T.G.: A 890fJ/bit UWB transmitter for SoC integration in high bit-rate transcutaneous bio-implants. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp. 2271--2274. IEEE (2013)

    Chapter  Google Scholar 

  136. Chae, M.S., Yang, Z., Yuce, M.R., Hoang, L., Liu, W.: A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312--321 (2009)

    Article  Google Scholar 

  137. Lim, J., Rezvanitabar, A., Degertekin, F.L., Ghovanloo, M.: An impulse radio PWM-based wireless data acquisition sensor interface. IEEE Sensors J. 19(2), 603--614 (2019)

    Article  Google Scholar 

  138. Islam, M.N., Yuce, M.R.: Review of medical implant communication system (mics) band and network. ICT Express. 2(4), 188--194 (2016). Special Issue on Emerging Technologies for Medical Diagnostics

    Article  Google Scholar 

  139. Ghanbari, M.M., Piech, D.K., Shen, K., Faraji Alamouti, S., Yalcin, C., Johnson, B.C., Carmena, J.M., Maharbiz, M.M., Muller, R.: A sub-mm3 ultrasonic free-floating implant for multi-mote neural recording. IEEE J. Solid State Circuits. 54(11), 3017--3030 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy G. Constandinou .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Szostak, K.M., Feng, P., Mazza, F., Constandinou, T.G. (2021). Distributed Neural Interfaces: Challenges and Trends in Scaling Implantable Technology. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics