Skip to main content

Hemispheric Air Pollution

  • Reference work entry
  • First Online:
Handbook of Air Quality and Climate Change
  • 591 Accesses

Abstract

Air pollutants with lifetimes of a few weeks or longer, such as ozone, fine particulate matter, mercury, and many persistent organic pollutants, are ubiquitous in the atmosphere, and may be transported around the globe under the influence of global atmospheric circulation. The composition of the lower atmosphere forms the background upon which regional air pollution builds, and may thus have a substantial impact on air quality in many parts of the world. The source of some of these pollutants is natural, associated with vegetation, soils, fires, lightning, and descent of air from the stratosphere, while others arise from human activity associated with industry, power generation, transport, residential sources, and agriculture. While some pollutants are emitted directly, others such as ozone may be formed through photochemical processes in the atmosphere from precursors emitted elsewhere. These longer-lived pollutants are transported and dispersed around the globe, reaching even the cleanest and most remote of locations, and this contributes to poor air quality and environmental damage in unpopulated polar and oceanic regions. Atmospheric concentrations of many longer-lived pollutants are continuing to build up in the atmosphere associated with increased anthropogenic emissions, and this is likely to influence future air quality around the globe. Climate change is already altering background air pollutant concentrations, but the effects differ for different pollutants and in different regions, as these changes influence emissions, formation, and removal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719. https://doi.org/10.1126/science.109266

    Article  Google Scholar 

  2. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

    Article  Google Scholar 

  3. Van Dingenen R, Dentener FJ, Raes F et al (2009) The global impact of ozone on agricultural yields under current and future air quality legislation. Atmos Environ 43:608–618. https://doi.org/10.1016/j.atmosenv.2008.10.033

    Article  Google Scholar 

  4. Monks PS, Archibald AT, Colette A, Cooper O, Coyle M, Derwent R, Fowler D, Granier C, Law KS, Mills GE, Stevenson DS, Tarasova O, Thouret V, von Schneidemesser E, Sommariva R, Wild O, Williams ML (2015) Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys 15:8889–8973. https://doi.org/10.5194/acp-15-8889-2015

    Article  Google Scholar 

  5. Hardacre C, Wild O, Emberson L (2015) An evaluation of ozone dry deposition in global scale chemistry climate models. Atmos Chem Phys 15:6419–6436. https://doi.org/10.5194/acp-15-6419-2015

    Article  Google Scholar 

  6. Griffiths PT, Murray LT, Zeng G et al (2021) Tropospheric ozone in CMIP6 simulations. Atmos Chem Phys 21:4187–4218. https://doi.org/10.5194/acp-21-4187-2021

    Article  Google Scholar 

  7. Fischer EV, Jacob DJ, Yantosca RM et al (2014) Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmos Chem Phys 14:2679–2698. https://doi.org/10.5194/acp-14-2679-2014

    Article  Google Scholar 

  8. Fuzzi S, Baltensperger U, Carslaw K, Decesari S et al (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15:8217–8299. https://doi.org/10.5194/acp-15-8217-2015

    Article  Google Scholar 

  9. Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) (2010) In: Dutchak F, Keating T, Akimoto H (eds) Hemispheric transport of air pollution 2010, part C: persistent organic pollutants, Air Pollut. Stud. 19. UNECE, Geneva, Switzerland, available at: http://www.htap.org/

    Google Scholar 

  10. Cameron MA et al (2017) An intercomparative study of the effects of aircraft emissions on surface air quality. J Geophys Res Atmos 122:8325–8344. https://doi.org/10.1002/2016JD025594

    Article  Google Scholar 

  11. Hoor P, Borken-Kleefeld J, Caro D, Dessens O et al (2009) The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. Atmos Chem Phys 9:3113–3136. https://doi.org/10.5194/acp-9-3113-2009

    Article  Google Scholar 

  12. Saunois M et al (2020) The global methane budget 2000-2017. Earth Syst Sci Data 12:1561–1623. https://doi.org/10.5194/essd-12-1561-2020

    Article  Google Scholar 

  13. Fiore AM, West JJ, Horowitz LW, Naik V, Schwarzkopf MD (2008) Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. J Geophys Res 113:D08307. https://doi.org/10.1029/2007JD009162

    Article  Google Scholar 

  14. Vinken GCM, Boersma KF, Maasakkers JD, Adon M, Martin RV (2014) Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations. Atmos Chem Phys 14:10363–10381. https://doi.org/10.5194/acp-14-10363-2014

    Article  Google Scholar 

  15. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210. https://doi.org/10.5194/acp-6-3181-2006

    Article  Google Scholar 

  16. Murray LT (2016) Lightning NOx and impacts on air quality. Curr Pollut Rep 2:115–133. https://doi.org/10.1007/s40726-016-0031-7

    Article  Google Scholar 

  17. Jaffe DA, Wigder NL (2012) Ozone production from wildfires: a critical review. Atmos Environ 51:1–10. https://doi.org/10.1016/j.atmosenv.2011.11.063

    Article  Google Scholar 

  18. Hess PG, Zbinden R (2013) Stratospheric impact on tropospheric ozone variability and trends: 1990–2009. Atmos Chem Phys 13:649–674. https://doi.org/10.5194/acp-13-649-2013

    Article  Google Scholar 

  19. Shindell DT, Chin M, Dentener F et al (2008) A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys 8:5353–5372. https://doi.org/10.5194/acp-8-5353-2008

    Article  Google Scholar 

  20. Cooper OR, Forster C, Parrish D et al (2004) A case study of transpacific warm conveyor belt transport: influence of merging airstreams on trace gas import to North America. J Geophys Res 109. https://doi.org/10.1029/2003JD003624

  21. Tarasick D, Galbally IE, Cooper OR, Schultz MG, Ancellet G et al (2019) Tropospheric ozone assessment report: tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties, tropospheric ozone assessment report: tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elem Sci Anth 7(1):39. https://doi.org/10.1525/elementa.376

    Article  Google Scholar 

  22. Gaudel A et al (2018) Tropospheric ozone assessment report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem Sci Anth 6:39. https://doi.org/10.1525/elementa.291

    Article  Google Scholar 

  23. Young PJ, Archibald AT, Bowman KW, Lamarque JF, Naik V et al (2013) Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:2063–2090. https://doi.org/10.5194/acp-13-2063-2013

    Article  Google Scholar 

  24. Zhang Y, Cooper O, Gaudel A et al (2016) Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions. Nat Geosci 9:875–879. https://doi.org/10.1038/ngeo2827

    Article  Google Scholar 

  25. van Donkelaar A, Martin RV, Brauer M, Boys BL (2015) Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 123:135–143. https://doi.org/10.1289/ehp.1408646

    Article  Google Scholar 

  26. Aas W, Mortier A, Bowersox V et al (2019) Global and regional trends of atmospheric sulfur. Sci Rep 9:953. https://doi.org/10.1038/s41598-018-37304-0

    Article  Google Scholar 

  27. Young PJ et al (2018) Tropospheric ozone assessment report: assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elem Sci Anth 6:10. https://doi.org/10.1525/elementa.265

    Article  Google Scholar 

  28. Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) (2010) In: Dentener F, Zuber A (eds) Hemispheric transport of air pollution 2010, part a: ozone and particulate matter, Air Pollut. Stud. 17. UNECE, Geneva, Switzerland., available at: http://www.htap.org/

    Google Scholar 

  29. Butler T, Lupascu A, Nalam A (2020) Attribution of ground-level ozone to anthropogenic and natural sources of nitrogen oxides and reactive carbon in a global chemical transport model. Atmos Chem Phys 20:10707–10731. https://doi.org/10.5194/acp-20-10707-2020

    Article  Google Scholar 

  30. Fiore AM, Dentener FJ, Wild O et al (2009) Multi-model estimates of intercontinental source-receptor relationships for ozone pollution. J Geophys Res 114:D04301. https://doi.org/10.1029/2008JD010816

    Article  Google Scholar 

  31. Huang M, Carmichael GR, Pierce RB, Jo DS, Park RJ, Flemming J, Emmons et al (2017) Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study. Atmos Chem Phys 17:5721–5750. https://doi.org/10.5194/acp-17-5721-2017

  32. Jonson JE, Stohl A, Fiore AM, Hess P et al (2010) A multi-model analysis of vertical ozone profiles. Atmos Chem Phys 10:5759–5783. https://doi.org/10.5194/acp-10-5759-2010

    Article  Google Scholar 

  33. Turnock ST, Wild O, Sellar A, O’Connor FM (2019) 300 years of tropospheric ozone changes using CMIP6 scenarios with a parameterised approach. Atmos Environ 213:686–698. https://doi.org/10.1016/j.atmosenv.2019.07.001

    Article  Google Scholar 

  34. Casper-Anenberg S et al (2009) Intercontinental impacts of ozone pollution on human mortality. Environ Sci Technol 43(17):6482–6487. https://doi.org/10.1021/es900518z

    Article  Google Scholar 

  35. Turnock ST, Allen RJ, Andrews M, Bauer SE et al (2020) Historical and future changes in air pollutants from CMIP6 models. Atmos Chem Phys 20:14547–14579. https://doi.org/10.5194/acp-20-14547-2020

    Article  Google Scholar 

  36. Fiore AM, Naik V, Spracklen DV, Steiner A et al (2012) Global air quality and climate. Chem Soc Rev 41:6663–6683. https://doi.org/10.1039/c2cs35095e

    Article  Google Scholar 

  37. Finney DL, Doherty RM, Wild O et al (2018) A projected decrease in lightning under climate change. Nature Clim Change 8:210–213. https://doi.org/10.1038/s41558-018-0072-6

    Article  Google Scholar 

  38. Doherty RM, Orbe C, Zeng G et al (2017) Multi-model impacts of climate change on pollution transport from global emission source regions. Atmos Chem Phys 17:14219–14237. https://doi.org/10.5194/acp-17-14219-2017

    Article  Google Scholar 

  39. Banerjee A, Maycock AC, Archibald AT et al (2016) Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmos Chem Phys 16:2727–2746. https://doi.org/10.5194/acp-16-2727-2016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Butler, T., Wild, O. (2023). Hemispheric Air Pollution. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_12

Download citation

Publish with us

Policies and ethics