Skip to main content

Navigation, Routing and Nature-Inspired Optimization

  • Chapter
  • First Online:
Nature-Inspired Computation in Navigation and Routing Problems

Part of the book series: Springer Tracts in Nature-Inspired Computing ((STNIC))

  • 376 Accesses

Abstract

Navigation abilities are crucial for survival in nature, and there are a wide range of sophisticated abilities concerning animal navigation and migration. Many applications are related to navigation and routing problems, which are in turn related to optimization problems. This chapter provides an overview of navigation in nature, navigation and routing problems as well as their mathematical formulations. We will then introduce some nature-inspired algorithms for solving optimization problems with discussions about their main characteristics and the ways of solution representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcock J (2005) Animal Behavior: An Evolutionary Approach, 8th Edition, Sinauer Associates Publishing, Sunderland. Mass, USA

    Google Scholar 

  2. Redish AD (1999) Beyond the cognitive map. MIT Press, Cambridge

    Book  Google Scholar 

  3. Kennedy J, Eberhart RC ((1995)) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, NJ, pp 1942–1948

    Google Scholar 

  4. Yang XS (2014) Nature-inspired optimization algorithms. Elsevier Insight, London

    MATH  Google Scholar 

  5. Dingle H, Drake VA (2007) What is migration? Bioscience 57(2):113–121

    Article  Google Scholar 

  6. Gauthreaux SA (1980) Animal migration, orientation, and navigation. Academic Press, Edinburgh

    Google Scholar 

  7. von Frisch K (1967) The dance language and orientation of bees, Harvard University Press, Cambridge, Mass. (Translation from Tanzsprache und Orientierung der Bienen)

    Google Scholar 

  8. Blaser N, Guskov SI, Entin VA, Wolfer DP, Kanevskyi VA, Lipp H (2014) Gravity anomalies without geomagnetic disturbances interfere with pigeon homing—a GPS tracking study. J Exp Biol 217(22):4057–4067

    Article  Google Scholar 

  9. Walcott C (1996) Piegon homing: observations, experiments and confusions. J Exp Biol 199(1):21–27

    Google Scholar 

  10. Dacke M, Baird E, Byrne M, Scholtz CH, Warrant EJ (2013) Dung beetles use the Milky Way for orientation. Curr Biol 23(4):298–300

    Article  Google Scholar 

  11. Darwin C (1873) Origin of certain instincts. Nature 7(179):417–418

    Article  Google Scholar 

  12. Whishaw IQ, Hines DJ, Wallace DG (2001) Dead reckoning (path integration) requires hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allotehetic) and dark (idiothetic) tests. Behav Brain Res 127(1–2):49–69

    Article  Google Scholar 

  13. Kimchi T, Etienne AS, Terkel J (2004) A subterranean mammal uses the magnetic compass for path integration. PNAS 101(4):1105–1109

    Article  Google Scholar 

  14. Lohmann KJ, Lohmann CMF, Endres CS (2008) The sensory ecology of ocean navigation. J Exp Biol 211(11):1719–1728

    Article  Google Scholar 

  15. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge Univeristy Press, Cambridge

    Book  Google Scholar 

  16. Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, Hoboken

    Book  Google Scholar 

  17. Applegate DL, Bixby RM, Chvátal V, Cook WJ (2007) Traveling salesman problem: a computational study. Princeton University Press, Princeton

    MATH  Google Scholar 

  18. Dantzig GB, Fulkerson R, Johnson SM (1954) Solution of a large-scale traveling salesman problem. Oper Res 2(4):393–410

    MathSciNet  MATH  Google Scholar 

  19. Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. Wiley, Chichester, UK

    MATH  Google Scholar 

  20. Munari P, Dollevoet T, Spliet R (2017) A generalized formulation for vehicle routing problems. arXiv:1606.01935v2. Accessed on 22 Aug 2019

  21. Toth P, Vigo D (2014) Vehicle routing: problems, methods and applications, MOS-SIAM series on optimization, 2nd edn. Society for Industrial and Applied Mathematics

    Google Scholar 

  22. Wen M (2010) Rich vehicle routing problems and applications, Deparment of Management Engineering, Technical University of Denmark, Ph.D. thesis

    Google Scholar 

  23. Laporte G, Toth P, Vigo D (2013) Vehicle routing: historical perspective and recent contributions. EURO J Transp Logist 2(1–2):1–4

    Article  Google Scholar 

  24. Lahyani R, Klemakhem M, Semet F (2015) Rich vehicle routing prblems: From a taxonomy to a definition. Eur J Oper Res 241(1):1–14

    Article  Google Scholar 

  25. Vidal T, Crainic TG, Gendreau M, Prins C (2013) Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. Eur J Oper Res 231(1):1–21

    Article  MathSciNet  Google Scholar 

  26. Osaba E, Yang XS, Diaz F, Onieva E, Masegosa AD, Perallos A (2017) A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Comput 21(11):5295–5308

    Article  Google Scholar 

  27. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptural comparision. ACM Comput Surv 35(2):268–308

    Article  Google Scholar 

  28. Yang XS, He XS (2019) Mathematical foundations of nature-inspired algorithms. Springer, Cham, Switzerland

    Book  Google Scholar 

  29. Holland J (1975) Adaptation in natural and arficial systems. University of Michigan Press, Ann Arbor, USA

    Google Scholar 

  30. Goldberg DE (1989) Genetic algorithms in search, optimisation and machine learning. Reading, Addison Wesley, Mass, Reading, MA

    MATH  Google Scholar 

  31. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  32. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84

    Article  Google Scholar 

  33. Yang XS (2014) Cuckoo search and firefly algorithm: theory and applications, studies in computational intelligence, vol 516. Springer, New york

    Book  Google Scholar 

  34. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress on nature and biologically inspired computing. (NaBic 2009), Coimbatore, India, IEEE Publications, USA, pp 210–214

    Google Scholar 

  35. Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169–174

    Article  Google Scholar 

  36. Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844

    Article  MathSciNet  Google Scholar 

  37. Reynolds AM, Rhodes CJ (2009) The Lévy fligth paradigm: random search patterns and mechanisms. Ecology 90(4):877–887

    Article  Google Scholar 

  38. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624

    Article  MathSciNet  Google Scholar 

  39. Yang XS (2010) A new metaheuristic bat-inspired algorithm, In: Nature-inspired cooperative strategies for optimization. (NICSO 2010), Springer, SCI 284, pp 65–74

    Google Scholar 

  40. Yang XS (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput 3(5):267–274

    Article  Google Scholar 

  41. Yang XS, Karamanoglu M, He XS (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237

    Article  MathSciNet  Google Scholar 

  42. Fisher L (2009) The perfect swarm: the science of complexity in everyday life. Basic Books, London

    Google Scholar 

  43. Surowiecki J (2004) The Wisdom of crowds. Anchor Books

    Google Scholar 

  44. Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–59

    Article  MathSciNet  Google Scholar 

  45. Ashby WA (1962) Princinples of the self-organizing sysem. In: Von Foerster H, Zopf GW (eds) Principles of self-organization: transactions of the university of Illinois symposium. Pergamon Press, London, UK, pp 255–278

    Google Scholar 

  46. Keller EF (2009) Organisms, machines, and thunderstorms: a history of self-organization, part two. Complex Emergenece Stable Attractors Hist Stud Nat Sci 39(1):1–31

    Article  MathSciNet  Google Scholar 

  47. Wolpert DH, Macready WG (1997) No free lunch theorem for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-She Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, XS., Zhao, YX. (2020). Navigation, Routing and Nature-Inspired Optimization. In: Yang, XS., Zhao, YX. (eds) Nature-Inspired Computation in Navigation and Routing Problems. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-15-1842-3_1

Download citation

Publish with us

Policies and ethics