Skip to main content

Highly Sensitive Polymer/Multiwalled Carbon Nanotubes Based Pressure and Strain Sensors for Robotic Applications

  • Chapter
  • First Online:
New Trends in Robot Control

Abstract

In the last decades, significant advances have been reached in the robotic field by the development and implementation of novel tactile sensors for robot hand and body attached sensors, in order to achieve high robot performance. Because of the unique and fascinating properties of polymer/carbon nanotubes (CNTs) nanocomposites, they were chosen for the design of highly sensitive and stable tactile sensors to detect pressure and strain. In this chapter we propose two sensor structures for robotic applications. Poly-Dimethylsiloxane/Multiwalled carbon nanotubes (MWCNTs) soft pressure sensors were prepared using solution processing method and molded in different shapes depending on the application requirements. The developed pressure sensors show promising piezocapacitive performance, very high sensitivity of 45%/N at low forces of 0–1 N and a wide pressure sensing a range of 0.5 Pa–570 kPa. These properties are essential for robotic applications like touch sensing, grasping and gait analysis. In the other part, conductive thermoplastic polyurethane (TPU)/MWCNTs filaments strain sensors were firstly made using an extrusion process. The sensors were subjected to strain loads. The results demonstrate excellent piezoresistive responses a gauge factor around 26 and stretchability more than 50% that was suitable for measuring finger bending.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, S.F., Ali, S.M.B., Qureshi, S.S.M.: Electronic speaking glove for speechless patients, a tongue to a dumb. In: 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, pp. 56–60. IEEE (2010)

    Google Scholar 

  2. Aqilah, A., Jaffar, A., Bahari, S., Low, C.Y., Koch, T.: Resistivity characteristics of single miniature tactile sensing element based on pressure sensitive conductive rubber sheet. In: 2012 IEEE 8th International Colloquium on Signal Processing and Its Applications, pp. 223–227. IEEE (2012)

    Google Scholar 

  3. Cheng, M.-Y., Tsao, C.-M., Lai, Y.-T., Yang, Y.-J.: A novel highly-twistable tactile sensing array using extendable spiral electrodes. In: 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, pp. 92–95. IEEE (2009)

    Google Scholar 

  4. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sensor based on biologically inspired edge encoding. In: 2009 International Conference on Advanced Robotics, pp. 1–6. IEEE (2009)

    Google Scholar 

  5. Dao, D.V., Sugiyama, S., Hirai, S., et al.: Analysis of sliding of a soft fingertip embedded with a novel micro force/moment sensor: simulation, experiment, and application. In: 2009 IEEE International Conference on Robotics and Automation, pp. 889–894. IEEE (2009)

    Google Scholar 

  6. Fiorillo, A.S.: A piezoresistive tactile sensor. IEEE Trans. Instrum. Meas. 46(1), 15–17 (1997)

    Article  Google Scholar 

  7. Gao, Y., Ota, H., Schaler, E.W., Chen, K., Zhao, A., Gao, W., Fahad, H.M., Leng, Y., Zheng, A., Xiong, F., et al.: Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 29(39), 1701985 (2017)

    Article  Google Scholar 

  8. Gerratt, A.P., Sommer, N., Lacour, S.P., Billard, A.: Stretchable capacitive tactile skin on humanoid robot fingers? first experiments and results. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 238–245. IEEE (2014)

    Google Scholar 

  9. Gong, D., He, R., Yu, J., Zuo, G.: A pneumatic tactile sensor for co-operative robots. Sensors 17(11), 2592 (2017)

    Article  Google Scholar 

  10. Hasegawa, Y., Shikida, M., Ogura, D., Suzuki, Y., Sato, K.: Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber. J. Micromechanics Microengineering 18(8), 085014 (2008)

    Article  Google Scholar 

  11. Heo, J.-S., Kim, J.-Y., Lee, J.-J.: Tactile sensors using the distributed optical fiber sensors. In: 2008 3rd International Conference on Sensing Technology, pp. 486–490. IEEE (2008)

    Google Scholar 

  12. Ho, D.H., Sun, Q., Kim, S.Y., Han, J.T., Kim, D.H., Cho, J.H.: Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601–2608 (2016)

    Article  Google Scholar 

  13. Jeong, Y.R., Park, H., Jin, S.W., Hong, S.Y., Lee, S.-S., Ha, J.S.: Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 25(27), 4228–4236 (2015)

    Article  Google Scholar 

  14. Lee, H.-K., Chang, S.-I., Yoon, E.: A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. J. Microelectromechanical Syst. 15(6), 1681–1686 (2006)

    Article  Google Scholar 

  15. Lee, J., Kim, S., Lee, J., Yang, D., Park, B.C., Ryu, S., Park, I.: A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6(20), 11932–11939 (2014)

    Article  Google Scholar 

  16. Li, T., Luo, H., Qin, L., Wang, X., Xiong, Z., Ding, H., Gu, Y., Liu, Z., Zhang, T.: Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 12(36), 5042–5048 (2016)

    Article  Google Scholar 

  17. Li, J., Orrego, S., Pan, J., He, P., Kang, S.H.: Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing. Nanoscale 11(6), 2779–2786 (2019)

    Article  Google Scholar 

  18. Liu, C.-X., Choi, J.-W.: Patterning conductive pdms nanocomposite in an elastomer using microcontact printing. J. Micromechanics Microengineering 19(8), 085019 (2009)

    Article  Google Scholar 

  19. Liu, Y., Han, H., Liu, T., Yi, J., Li, Q., Inoue, Y.: A novel tactile sensor with electromagnetic induction and its application on stick-slip interaction detection. Sensors 16(4), 430 (2016)

    Article  Google Scholar 

  20. Ma, L., Shuai, X., Hu, Y., Liang, X., Zhu, P., Sun, R., Wong, C.-P.: A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J. Mater. Chem. C 6(48), 13232–13240 (2018)

    Article  Google Scholar 

  21. Manunza, I., Sulis, A., Bonfiglio, A.: Pressure sensing by flexible, organic, field effect transistors. Appl. Phys. Lett. 89(14), 143502 (2006)

    Article  Google Scholar 

  22. Mattmann, C., Clemens, F., Tröster, G.: Sensor for measuring strain in textile. Sensors 8(6), 3719–3732 (2008)

    Article  Google Scholar 

  23. Nag, A., Mukhopadhyay, S., Kosel, J.: Transparent biocompatible sensor patches for touch sensitive prosthetic limbs. In: 2016 10th International Conference on Sensing Technology (ICST), pp. 1–6. IEEE (2016)

    Google Scholar 

  24. Núñez, C.G., Navaraj, W.T., Polat, E.O., Dahiya, R.: Energy-autonomous, flexible, and transparent tactile skin. Adv. Funct. Mater. 27(18), 1606287 (2017)

    Article  Google Scholar 

  25. Ramalingame, R., Chandraker, P., Kanoun, O.: Investigation on the influence of solvents on MWCNT-PDMS nanocomposite pressure sensitive films. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 1, p. 384 (2017)

    Google Scholar 

  26. Ramalingame, R., Hu, Z., Gerlach, C., Rajendran, D., Zubkova, T., Baumann, R., Kanoun, O.: Flexible piezoresistive sensor matrix based on a carbon nanotube PDMS composite for dynamic pressure distribution measurement. J. Sens. Sens. Syst. 8(1), 1–7 (2019)

    Google Scholar 

  27. Ramalingame, R., Lakshmanan, A., Müller, F., Thomas, U., Kanoun, O.: Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and pdms polymer nanocomposite. J. Sens. Sens. Syst. 8(1), 87–94 (2019)

    Google Scholar 

  28. Schmitz, A., Maggiali, M., Natale, L., Bonino, B., Metta, G.: A tactile sensor for the fingertips of the humanoid robot iCub. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2212–2217. IEEE (2010)

    Google Scholar 

  29. Seo, S., Kim, S., Jung, J., Ma, R., Baik, S., Moon, H.: Flexible touch sensors made of two layers of printed conductive flexible adhesives. Sensors 16(9), 1515 (2016)

    Article  Google Scholar 

  30. Spanu, A., Pinna, L., Viola, F., Seminara, L., Valle, M., Bonfiglio, A., Cosseddu, P.: A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor. Org. Electron. 36, 57–60 (2016)

    Article  Google Scholar 

  31. Tadakaluru, S., Kumpika, T., Kantarak, E., Sroila, W., Panthawan, A., Sanmuangmoon, P., Thongsuwan, W., Singjai, P.: Highly stretchable and sensitive strain sensors using nano-graphene coated natural rubber. Plast. Rubber Compos. 46(7), 301–305 (2017)

    Article  Google Scholar 

  32. Tewari, A., Gandla, S., Bohm, S., McNeill, C.R., Gupta, D.: Highly exfoliated MWNT-rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications. ACS Appl. Mater. Interfaces 10(6), 5185–5195 (2018)

    Article  Google Scholar 

  33. Tian, H., Shu, Y., Wang, X.-F., Mohammad, M.A., Bie, Z., Xie, Q.-Y., Li, C., Mi, W.-T., Yang, Y., Ren, T.-L.: A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 5, 8603 (2015)

    Article  Google Scholar 

  34. Yang, Y.-J., Cheng, M.-Y., Shih, S.-C., Huang, X.-H., Tsao, C.-M., Chang, F.-Y., Fan, K.-C.: A 32 $\times $ 32 temperature and tactile sensing array using pi-copper films. Int. J. Adv. Manuf. Technol. 46(9–12), 945–956 (2010)

    Article  Google Scholar 

  35. Yu, S.-L., Chang, D.-R., Tsao, L.-C., Shih, W.-P., Chang, P.-Z.: Porous nylon with electro-active dopants as flexible sensors and actuators. In: 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, pp. 908–911. IEEE (2008)

    Google Scholar 

  36. Zhu, B., Niu, Z., Wang, H., Leow, W.R., Wang, H., Li, Y., Zheng, L., Wei, J., Huo, F., Chen, X.: Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10(18), 3625–3631 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research work is carried out under the “Landesinnovationsstipendium (100284169)”, funded by the Sachsische Aufbaubank (SAB) and the European Social Fund (ESF). In addition, a part of this work was funded by the Brazilian CSF (Ciencia sem Fronteiras) program from CAPES/CNPq under the contract number 207319/2014-6. We thank Prof. Dr.-Ing. Ulrike Thomas, Chair of Robotics and Human Machine Interaction for providing facilities to analysis the gait in humanoid robots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajarajan Ramalingame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramalingame, R., Bouhamed, A., Rajendran, D., da Veiga Torres, R., Hu, Z., Kanoun, O. (2020). Highly Sensitive Polymer/Multiwalled Carbon Nanotubes Based Pressure and Strain Sensors for Robotic Applications. In: Ghommam, J., Derbel, N., Zhu, Q. (eds) New Trends in Robot Control. Studies in Systems, Decision and Control, vol 270. Springer, Singapore. https://doi.org/10.1007/978-981-15-1819-5_19

Download citation

Publish with us

Policies and ethics