Skip to main content

Ensemble of 3D Densely Connected Convolutional Network for Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease

  • Chapter
  • First Online:
Deep Learning Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1098))

Abstract

Automatic diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) from 3D brain magnetic resonance (MR) images play an important role in the early treatment of dementia disease. Deep learning architectures can extract potential features of dementia disease and capture brain anatomical changes from MRI scans. Given the high dimension and complex features of the 3D medical images, computer-aided diagnosis is still confronted with challenges. Firstly, compared with the number of learnable parameters, the number of training samples is very limited, which can cause overfitting problems. Secondly, the deepening of the network layer makes gradient information gradually weaken and even disappears in the process of transmission, resulting in mode collapse. This chapter proposed an ensemble of 3D densely connected convolutional networks for AD and MCI diagnosis from 3D MRIs. Dense connections were introduced to maximize the information flow, where each layer connects with all subsequent layers directly. Bottleneck layers and transition layers are also employed to reduce parameters and lead to more compact models. Then the probability-based fusion method was employed to combine 3D-DenseNets with different architectures. Extensive experiments were conducted to analyze the performance of 3D-DenseNet with different hyperparameters and architectures. Superior performance of the proposed model was demonstrated on ADNI dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzheimer’s Association et al., 2017 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 13(4), 325–373 (2017)

    Google Scholar 

  2. S. Li, O. Okonkwo, M. Albert, M.-C. Wang, Variation in variables that predict progression from MCI to AD dementia over duration of follow-up. Am. J. Alzheimer’s Dis. 2(1), 12–28 (2013)

    Google Scholar 

  3. R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehéricy, M.-O. Habert, M. Chupin, H. Benali, O. Colliot, A.D.N. Initiative et al., Automatic classification of patients with alzheimer’s disease from structural MRI: a comparison of ten methods using the adni database. Neuroimage 56(2), 766–781 (2011)

    Article  Google Scholar 

  4. F. Falahati, E. Westman, A. Simmons, Multivariate data analysis and machine learning in alzheimer’s disease with a focus on structural magnetic resonance imaging. J. Alzheimer’s Dis. 41(3), 685–708 (2014)

    Article  Google Scholar 

  5. E. Moradi, A. Pepe, C. Gaser, H. Huttunen, J. Tohka, A.D.N. Initiative et al., Machine learning framework for early MRI-based alzheimer’s conversion prediction in mci subjects. Neuroimage 104, 398–412 (2015)

    Article  Google Scholar 

  6. J.-Z. Cheng, D. Ni, Y.-H. Chou, J. Qin, C.-M. Tiu, Y.-C. Chang, C.-S. Huang, D. Shen, C.-M. Chen, Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans. Sci. Rep. 6, 24454 (2016)

    Article  Google Scholar 

  7. S.M. Plis, D.R. Hjelm, R. Salakhutdinov, E.A. Allen, H.J. Bockholt, J.D. Long, H.J. Johnson, J.S. Paulsen, J.A. Turner, V.D. Calhoun, Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 229 (2014)

    Article  Google Scholar 

  8. F.C. Ghesu, B. Georgescu, T. Mansi, D. Neumann, J. Hornegger, D. Comaniciu, An artificial agent for anatomical landmark detection in medical images, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin, 2016), pp. 229–237

    Google Scholar 

  9. W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in International Conference on Information Processing in Medical Imaging (Springer, Berlin, 2015), pp. 588–599

    Google Scholar 

  10. S. Wang, Y. Shen, C. Shi, P. Yin, Z. Wang, P.W.-H. Cheung, J.P.Y. Cheung, K.D.-K. Luk, Y. Hu, Skeletal maturity recognition using a fully automated system with convolutional neural networks, IEEE Access 6, 29979–29993 (2018)

    Google Scholar 

  11. S.L. Risacher, A.J. Saykin, J.D. Wes, L. Shen, H.A. Firpi, B.C. McDonald, Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr. Alzheimer Res. 6(4), 347–361 (2009)

    Article  Google Scholar 

  12. W. Cai, S. Liu, L. Wen, S. Eberl, M. J. Fulham, D. Feng, 3D neurological image retrieval with localized pathology-centric CMRGlc patterns, in 2010 17th IEEE International Conference on Image Processing (ICIP) (IEEE, Piscataway, 2010), pp. 3201–3204

    Google Scholar 

  13. S. Liu, Y. Song, W. Cai, S. Pujol, R. Kikinis, X. Wang, D. Feng, Multifold Bayesian kernelization in Alzheimer’s diagnosis, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin, 2013), pp. 303–310

    Google Scholar 

  14. D. Zhang, Y. Wang, L. Zhou, H. Yuan, D. Shen, A.D.N. Initiative et al., Multimodal classification of Alzheimer’s disease and Mild Cognitive Impairment. Neuroimage 55(3), 856–867 (2011)

    Article  Google Scholar 

  15. F. Zhang, Y. Song, S. Liu, S. Pujol, R. Kikinis, M. Fulham, D. Feng, W. Cai, Semantic association for neuroimaging classification of PET images. J. Nucl. Med. 55(supplement 1), 2029 (2014)

    Google Scholar 

  16. S. Liu, S. Liu, W. Cai, H. Che, S. Pujol, R. Kikinis, D. Feng, M.J. Fulham et al., Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015)

    Article  Google Scholar 

  17. F. Li, L. Tran, K.-H. Thung, S. Ji, D. Shen, J. Li, A robust deep model for improved classification of AD/MCI patients. IEEE J. Biomed. Health Inform. 19(5), 1610–1616 (2015)

    Article  Google Scholar 

  18. C.D. Billones, O.J. L.D. Demetria, D.E.D. Hostallero, P.C. Naval, Demnet: a convolutional neural network for the detection of Alzheimer’s Disease and Mild Cognitive Impairment, in Proceedings of the 2016 IEEE Region 10 Conference (TENCON) (IEEE, Piscataway, 2016), pp. 3724–3727

    Google Scholar 

  19. E. Hosseini-Asl, R. Keynton, A. El-Baz, Alzheimer’s disease diagnostics by adaptation of 3D convolutional network, in 2016 IEEE International Conference on Image Processing (ICIP). (IEEE, Piscataway, 2016), pp. 126–130

    Google Scholar 

  20. A. Payan, G. Montana, Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks (2015), arXiv:1502.02506

  21. D. Cheng, M. Liu, J. Fu, Y. Wang, Classification of MR brain images by combination of multi-CNNs for ad diagnosis, in Ninth International Conference on Digital Image Processing (ICDIP 2017), vol. 10420 (International Society for Optics and Photonics, Bellingham, 2017), p. 1042042

    Google Scholar 

  22. C.R. Jack, M.A. Bernstein, N.C. Fox, P. Thompson, G. Alexander, D. Harvey, B. Borowski, P.J. Britson, J.L. Whitwell, C. Ward et al., The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  23. M.W. Woolrich, S. Jbabdi, B. Patenaude, M. Chappell, S. Makni, T. Behrens, C. Beckmann, M. Jenkinson, S.M. Smith, Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1), S173–S186 (2009)

    Article  Google Scholar 

  24. M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  25. G. Huang, Z. Liu, K.Q. Weinberger, L. van der Maaten, Densely connected convolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, Issue 2, (2017), p. 3

    Google Scholar 

  26. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in International Conference on Machine Learning (2015), pp. 448–456

    Google Scholar 

  27. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 2818–2826

    Google Scholar 

  28. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition (2016), pp. 770–778

    Google Scholar 

  29. G. Wen, Z. Hou, H. Li, D. Li, L. Jiang, E. Xun, Ensemble of deep neural networks with probability-based fusion for facial expression recognition. Cogn. Comput. 9(5), 597–610 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Wang, H., Cheung, A.C., Shen, Y., Gan, M. (2020). Ensemble of 3D Densely Connected Convolutional Network for Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease. In: Wani, M., Kantardzic, M., Sayed-Mouchaweh, M. (eds) Deep Learning Applications. Advances in Intelligent Systems and Computing, vol 1098. Springer, Singapore. https://doi.org/10.1007/978-981-15-1816-4_4

Download citation

Publish with us

Policies and ethics