Skip to main content

Condition Monitoring, Fault Detection and Diagnosis (FDD) of Photovoltaic System and Its Approaches

  • Chapter
  • First Online:
Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1096))

Abstract

Accuracy in measurements of fault is necessary for improving the reliability of PV module. This chapter provides an introduction about various techniques dedicated to identify and categorize the faults along with different types of modeling. This chapter also deals with the faults and its level of severity and can affect the working of the PV module. Different types of computational techniques have been explained in detail. Finally, a recommendation has been presented in form of the research gap of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D.S. Pillai, N. Rajasekar, Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems. Solar Energy Research Cell (SERC), School of Electrical Engineering (SELECT), VIT University, Vellore, India

    Google Scholar 

  2. Fault detection and monitoring systems for photovoltaic installations: A review Asma Triki-Lahiania, Afef Bennani-Ben Abdelghania, b, Ilhem Slama-Belkhodjaa a Université de Tunis El Manar, Ecole Nationale d′Ingénieurs de Tunis, Laboratoire des Systèmes Electriques (LR 11 ES 15), 1002, Tunis, Tunisia

    Google Scholar 

  3. Degradations of silicon photovoltaic modules: A literature review Ababacar Ndiaye a, Abde´rafi Charki b, Abdessamad Kobi b, Cheikh M.F. Ke´be´ a, Pape A. Ndiaye a, Vincent Samboua a Centre International de Formation et de Recherche en Energie Solaire (CIFRES), Ecole Supe´rieure Polytechnique-UCAD, BP 5085, Dakar-Fann, Senegal b,University of Angers-ISTIA-LASQUO, 62 Avenue Notre Dame du Lac, 49000 Angers, France Received 29 October 2012; received in revised form 5 April 2013; accepted 8 July 2013

    Google Scholar 

  4. L. Cristaldi et al., Diagnostic architecture: aprocedure based on tha analysis of the failure causes applied to PV plants. Measurement 67, 99–107 (2015)

    Article  Google Scholar 

  5. Encapsulant Adhesion to Surface Metallization on Photovoltaic Cells Jared Tracy, Nick Bosco, and Reinhold Dauskardt

    Google Scholar 

  6. R. Hariharan, M. Chakkarapani, G. Saravana Ilango, Member, IEEE, C. Nagamani, Senior Member, IEEE, A Method to Detect Photovoltaic Array Faults and Partial Shading in PV Systems

    Google Scholar 

  7. D. Stellbogen, Use of PV circuit simulation for fault detection in PV array fields, in Proceedings of Conference Record 23rd IEEE Photovoltaic Spec. Conference, Louisville, KY, USA, May 10–14 (1993), pp. 1302–1307

    Google Scholar 

  8. H. Patel, V. Agarwal, Maximum power point tracking scheme for PV systems operating under partially shaded conditions. IEEE Trans. Ind. Electron. 55(4), 1689–1698 (2008)

    Article  Google Scholar 

  9. J. Young-Hyok et al., A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions. IEEE Trans. Power Electron. 26(4), 1001–1009 (2011)

    Article  Google Scholar 

  10. M. Boztepe et al., Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm. IEEE Trans. Ind. Electron. 61(7), 3302–3312 (2014)

    Article  Google Scholar 

  11. G. V.-Quesada, F. G.-Gispert, R. P.-L´opez, M. R.-Lumbreras, and A. C.-Roca, “Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4319–4331, Nov. 2009

    Google Scholar 

  12. M.Z.S. El-Dein, M. Kazerani, M.M.A. Salama, Optimal photovoltaic array reconfiguration to reduce partial shading losses. IEEE Trans. Sustain. Energy 4(1), 145–153 (2013)

    Article  Google Scholar 

  13. S. Silverstre, A. Chouder, E. Karatepe, Automatic fault detection in grid connected PV systems. Sol. Energy 94, 119–127 (2013)

    Article  Google Scholar 

  14. ] Y. Zhao et al., “Decision tree-based fault detection and classification in solar photovoltaic arrays,” in Proc. 27th Annu. IEEE Appl. Power Electron.Conf. Expo., Orlando, FL, USA, Feb. 5–9, 2012, pp. 93–99

    Google Scholar 

  15. Z. Li, Y.Wang, D. Zhou, and C.Wu, “An intelligent method for fault diagnosis in photovoltaic array,” in Proc. Int. Conf. Syst. Simul. Sci. Comput.,2012, pp. 10–16

    Google Scholar 

  16. M.N. Akram, S. Lotfifard, Modeling and health monitoring of DC side of photovoltaic array. IEEE Trans. Sustain. Energy 6(4), 1245–1253 (2015)

    Article  Google Scholar 

  17. Fault Analysis and Detection Techniques of Solar Cells and PV Modules Ishtiak Ahmed Karim Department of Electrical and Electronic Engineering Ahsanullah University o{Science and Technology, Dhaka, Bangladesh

    Google Scholar 

  18. Kajari-Schroder, S., Iris Kunze, Ulrich Eitner, and M. Kontges.”Spatial and directional distribution of cracks in silicon PV modules after uniform mechanical loads.” In Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, pp. 833–837. IEEE, 2011

    Google Scholar 

  19. Kontges, M., S. Kajari-Schroder, I. Kunze, and U. Jahn. “Crack statistic of crystalline silicon photovoltaic modules.” 26th EU-PVSEC (2011): 3290–3294

    Google Scholar 

  20. ] Paggi, Marco, Mauro Corrado, and Maria Alejandra Rodriguez. “A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules.” Composite Structures (2012)

    Google Scholar 

  21. Kontges, M., 1. Kunze, S. Kajari-Schroder, X. Breitenmoser, and B.Bjofneklett. “Quantifying the risk of power loss in PV modules Due to micro cracks.” Proc. 25th EU PVSEC (2010): 3745

    Google Scholar 

  22. Kontges, M., I. I (unze, S. Kajari-Schri:ider, X. Breitenmoser, and B.Bjorneklett. “The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks”Solar Energy Materials and Solar Cells 95, no. 4 (2011): 1131–1137

    Article  Google Scholar 

  23. Sylke Meyer, Susanne Richter, Sebastian Timmel, Marcus Glaser, Martina Werner, Sina Swatek, Christian Hagendorf, Snail trails: root cause analysis and test procedures. Energy Procedia 38, 498–505 (2013)

    Article  Google Scholar 

  24. Peng, Anming Hu, Wenda Zheng, Peter Su, David He, Ken D.Oakes, Albert Fu et al. “Microscopy study of snail trail phenomenon on photovoltaic modules.” RSC Advances 2, no. 30 (2012): 11359–11365

    Article  Google Scholar 

  25. G. Acciani, O. Falcone, S. Vergura, Defects in poly-Silicon and amorphous Silicon solar cells (In IntI. Conf. on Renewable Energy and Power Quality, Spain, 2010)

    Book  Google Scholar 

  26. Herrmann, W., W. Wiesner, and W. Vaassen. “Hot spot investigations on PV modules-new concepts for a test standard and consequences for module design with respect to bypass diodes.” In Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty Sixth IEEE, pp. 1129–1132. IEEE, 1997

    Google Scholar 

  27. Qasem, Hassan, Thomas R. Betts, and Ralph Gottschalg. “Soiling correction model for long term energy prediction in photovoltaic modules.”In Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, pp. 003397–00340 l. IEEE, 2012

    Google Scholar 

  28. Kumar, E. Suresh, Bijan Sarkar, and D. K. Behera. “Soiling and Dust Impact on the Efficiency and the Maximum Power Point in the Photovoltaic Modules.” International Journal of Engineering 2, no. 2 (2013)

    Google Scholar 

  29. Mani, Monto, and Rohit Pillai. “Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations. “Renewable and Sustainable Energy Reviews 14, no. 9 (2010): 3124–3131

    Article  Google Scholar 

  30. A.Belaout, F. Krim, A. Mellit, “Neuro-Fuzzy Classifier for Fault Detection and Classification in Photovoltaic Module”

    Google Scholar 

  31. Y. Zhao, J. de Palma, J. Mosesian, R. Lyons, B. Lehman, Line line fault analysis and protection challenges in solar photovoltaic arrays. IEEE Trans. Ind. Electron. 60, 3784–3795 (2013)

    Article  Google Scholar 

  32. Article 690 - Solar Photovoltaic Systems, NFPA70, National Electrical Code, 2014

    Google Scholar 

  33. P.S. Rao, G.S. Ilango, C. Nagamani, Maximum Power from PV Arrays Using a Fixed Configuration under Different Shading Conditions. IEEE Journal of Photovoltaics 4(2), 679–686 (2014)

    Article  Google Scholar 

  34. S. Spataru, D. Sera, T. Kerekes, R. Teodorescu, “Detection of increased series losses in PV arrays using Fuzzy Inference Systems,” Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, pp. 464– 469, 2012

    Google Scholar 

  35. S. Jing Jun and L. Kay-Soon, “Photovoltaic model identification using particle swarm optimization with inverse barrier constraint,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3975–3983, 2012

    Article  Google Scholar 

  36. S. Harb, R.S. Balog, “Reliability of candidate photovoltaic module integrated- inverter (PV-MII) topologies—A usage model approach”,IEEE Trans. Power Electron. 28(6), 3019–3027 (2013)

    Article  Google Scholar 

  37. A. Drews, A.C. de Keizer, H.G. Beyer, E. Lorenz, J. Betcke, W.G.J.H.M. van Sark, W. Heydenreich, E. Wiemken, S. Stettler, P. Toggweiler, S. Bofinger, M. Schneider, G. Heilscher, D. Heinemann, Monitoring and remote failure detection of grid-connected PV systems based on satellite observations. Sol. Energy 81, 548–564 (2007)

    Article  Google Scholar 

  38. K. Byung-Kwan, K. Seung-Tak, B. Sun-Ho, P. Jung-Wook, Diagnosis of output power lowering in a PV array by using the Kalman-filter algorithm. IEEE Trans. Energy Convers. 27(4), 885–894 (2012)

    Article  Google Scholar 

  39. ] Y. Zhao, B. Lehman, R. Ball, J. Mosesian, and J.-F. de Palma, “Outlier detection rules for fault detection in solar photovoltaic arrays,” in Proc.28th IEEE Appl. Power Electron. Conf., pp. 2913–2920, 2013

    Google Scholar 

  40. A. Chouder, S. Silvestre, Automatic supervision and fault detection of PV systems based on power losses analysis. Energy Convers. Manag. 51, 1929–1937 (2010)

    Article  Google Scholar 

  41. W.A. Omran, M. Kazerani, M.M.A. Salama, A clustering-based method for quantifying the effects of large on-grid PV systems. IEEE Trans. Power Del. 25(4), 2617–2625 (2010)

    Article  Google Scholar 

  42. Y. Zhao, L. Yang, B. Lehman, J. F. de Palma, J. Mosesian, and R.Lyons, “Decision tree-based fault detection and classification in solar photovoltaic arrays,” in Proc. 27th IEEE Annu. Appl. Power Electron.Conf., pp. 93–99, 2012

    Google Scholar 

  43. A. Massi Pavan, A. Mellit, D. De Pieri, and S. A. Kalogirou, “A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants,”Appl. Energy, vol. 108, pp. 392–401, 2013

    Article  Google Scholar 

  44. Y. Zhao, R. Ball, J. Mosesian, J.F de Palma, and B. Lehman, “Graph-Based Semi-supervised Learning for Fault Detection and Classification in Solar Photovoltaic Arrays” IEEE Trans. Power Electron., vol. 30, NO.5, 2015

    Article  Google Scholar 

  45. A.G. Pipe, B. Carse, Further experiments in Fuzzy Classifier Systems for mobile robot control,” Intelligent Control. 2003 IEEE International Symposium on IEEE conference publications, pp. 805–810, 2003

    Google Scholar 

  46. L.I. Kuncheva, “How good are fuzzy if-then classifier?”, Systems, man, and Cybernet.—Part B: Cybernet. IEEE Trans. on 30(4), 501–509 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, O., Yadav, A.K., Ray, A.K. (2020). Condition Monitoring, Fault Detection and Diagnosis (FDD) of Photovoltaic System and Its Approaches. In: Malik, H., Iqbal, A., Yadav, A. (eds) Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems. Advances in Intelligent Systems and Computing, vol 1096. Springer, Singapore. https://doi.org/10.1007/978-981-15-1532-3_6

Download citation

Publish with us

Policies and ethics