Skip to main content

A Nuclei Segmentation Method Based on Optimal Fuzzy Clustering Using Salp Swarm Algorithm for Histopathological Images

  • Conference paper
  • First Online:
ICDSMLA 2019

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 601))

Abstract

Automatic segmentation of nuclei in the H&E stained histopathological images is an open-ended research problem. In this paper, a new salp swarm algorithm based fuzzy clustering method is proposed which is used for nuclei segmentation in the histopathological images. The salp swarm algorithm finds the optimal clusters by the objective function defined over intra-cluster distances or compactness. The performance of the proposed segmentation method is evaluated in terms of F1 score and aggregated jaccard index on the histopathological image dataset of TNBC patients. The experimental results depict the efficacy of the proposed method over the other considered clustering-based segmentation methods, namely K-means and Fuzzy C-means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saraswat M, Arya K, Sharma H (2013) Leukocyte segmentation in tissue images using differential evolution algorithm. Swarm Evol Comput 11:46–54

    Article  Google Scholar 

  2. Pal R, Saraswat M (2018) Enhanced bag of features using alexnet and improved biogeography-based optimization for histopathological image analysis. In: 2018 eleventh international conference on contemporary computing (IC3)

    Google Scholar 

  3. Zhao M, Tang H, Guo J, Sun J (2016) A data clustering algorithm using cuckoo search. In: Lecture Notes in frontier computing. Springer, pp 225–230

    Google Scholar 

  4. Szeliski R (2010) Computer vision: algorithms and applications. Springer

    Google Scholar 

  5. Saraswat M, Arya K (2014) Automated microscopic image analysis for leukocytes identification: a survey. Micron 65:20–33

    Article  Google Scholar 

  6. Pal R, Saraswat M (2018) Grey relational analysis based keypoint selection in bag-of-features for histopathological image classification. Recent Pat Comput Sci

    Google Scholar 

  7. Veta M, Pluim JP, Van Diest PJ, Viergever MA (2014) Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 61:1400–1411

    Article  Google Scholar 

  8. Veta M, Huisman A, Viergever MA, van Diest PJ, Pluim JP (2011) Marker-controlled watershed segmentation of nuclei in H&E stained breast cancer biopsy images. In Proceedings of IEEE biomedical imaging: from nano to macro. IEEE, pp 618–621

    Google Scholar 

  9. Xing F, Yang L (2016) Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev Biomed Eng 9:234–263

    Article  Google Scholar 

  10. Multi-organ nuclei segmentation challenge (miccai 2018) peterjacknaylor.github.io. Accessed 20 Nov 2018

  11. Sharma H, Arya K, Saraswat M (2014) Artificial bee colony algorithm for automatic leukocytes segmentation in histopathological images. In: 2014 9th international conference on industrial and information systems (ICIIS). IEEE, pp 1–6

    Google Scholar 

  12. Vink J, Van Leeuwen M, Van Deurzen C, De Haan G (2013) Efficient nucleus detector in histopathology images. J Microsc 249:124–135

    Article  Google Scholar 

  13. Jung C, Kim C, Chae SW, Oh S (2010) Unsupervised segmentation of overlapped nuclei using Bayesian classification. IEEE Trans Biomed Eng 57:2825–2832

    Article  Google Scholar 

  14. Wang P, Hu X, Li Y, Liu Q, Zhu X (2016) Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Signal Process 122:1–13

    Article  Google Scholar 

  15. Veta M, van Diest PJ, Kornegoor R, Huisman A, Viergever MA, Pluim JP (2013) Automatic nuclei segmentation in H&E stained breast cancer histopathology images. PLoS ONE 8:70–81

    Article  Google Scholar 

  16. Jorgensen S, Rasmussen AM, Andersen NKM, Andersen SK, Emborg J, Roge R, Ostergaard LR (2017) Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides. Cytom Part A 91:785–793

    Article  Google Scholar 

  17. Zheng Y, Jiang Z, Zhang H, Xie F, Ma Y, Shi H, Zhao Y (2018) Histopathological whole slide image analysis using context-based cbir. IEEE Trans Med Imaging 1:1–17

    Google Scholar 

  18. Jain K (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31:651–666

    Article  Google Scholar 

  19. Baraldi A, Blonda P (1999) A survey of fuzzy clustering algorithms for pattern recognition, I. IEEE Trans Syst Man Cybern Part B (Cybern) 29:778–785

    Google Scholar 

  20. Pal R, Sharma AK (2013) FSEP-E: enhanced stable election protocol based on fuzzy logic for cluster head selection in WSNs. In: 2013 sixth international conference on contemporary computing (IC3). IEEE, pp 427–432

    Google Scholar 

  21. Pal R, Saraswat M (2017) Improved biogeography-based optimization. Int J Adv Intell Paradig

    Google Scholar 

  22. Hancer E, Karaboga D (2017) A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number. Swarm Evol Comput 32:49–67

    Article  Google Scholar 

  23. Anari B, Torkestani JA, Rahmani A (2017) Automatic data clustering using continuous action-set learning automata and its application in segmentation of images. Appl Soft Comput 51:253–265

    Google Scholar 

  24. Tripathi K, Sharma K, Bala M (2017) Dynamic frequency based parallel k-bat algorithm for massive data clustering (dfbp- kba). Int J Syst Assur Eng Manag 1–9

    Google Scholar 

  25. Mittal H, Saraswat M (2019) Classification of histopathological images through bag-of-visual-words and gravitational search algorithm. In: Soft computing problem solving. Springer, pp 231–241

    Google Scholar 

  26. Pal R, Saraswat M (2017) Data clustering using enhanced biogeography-based optimization. In: Proceedings of IEEE international conference on contemporary computing. IEEE, pp 1–6

    Google Scholar 

  27. Nanda SJ, Panda G (2014) A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol Comput 16:1–18

    Article  Google Scholar 

  28. Mittal H, Saraswat M (2018) cKGSA based fuzzy clustering method for image segmentation of RGB-D images. In: 2018 eleventh international conference on contemporary computing (IC3). IEEE, pp 1–6

    Google Scholar 

  29. Ahmed H, Shedeed HA, Hamad S, Tolba MF (2017) On combining nature-inspired algorithms for data clustering. In: Handbook of research on machine learning innovations and trends. IGI Global, pp 826–855

    Google Scholar 

  30. Pal R, Pandey HMA, Saraswat M (2016) BEECP: biogeography optimization-based energy efficient clustering protocol for HWSNs. In: Proceedings of IEEE international conference on contemporary computing. IEEE, pp 1–6

    Google Scholar 

  31. Mittal H (2014) Diffie-hellman based smart-card multi-server authentication scheme. In: 2014 international conference on computational intelligence and communication networks (CICN). IEEE, pp 808–812

    Google Scholar 

  32. Sapra PS, Mittal H (2016) Secured LSB modification using dual randomness. In: 2016 international conference on recent advances and innovations in engineering (ICRAIE). IEEE, pp 1–4

    Google Scholar 

  33. Kulhari A, Pandey A, Pal R, Mittal H (2016) Unsupervised data classification using modified cuckoo search method. In: Proceedings of IEEE international conference on contemporary computing. IEEE, pp 1–5

    Google Scholar 

  34. Bhushan S, Pal R, Antoshchuk SG (2018) Energy efficient clustering protocol for heterogeneous wireless sensor network: a hybrid approach using ga and k-means. In: 2018 IEEE second international conference on data stream mining & processing (DSMP). IEEE, pp 381–385

    Google Scholar 

  35. Gupta R, Pal R (2018) Biogeography-based optimization with léVY-flight exploration for combinatorial optimization. In: 2018 8th international conference on cloud computing, data science & engineering (confluence), Jan 2018. IEEE

    Google Scholar 

  36. Mehta K, Pal R (2017) Biogeography based optimization protocol for energy efficient evolutionary algorithm: (BBO: EEEA). In: 2017 international conference on computing and communication technologies for smart nation (IC3TSN), Oct 2017. IEEE

    Google Scholar 

  37. Pandey C, Rajpoot DS, Saraswat M (2017) Hybrid step size based cuckoo search. In: 2017 tenth international conference on contemporary computing (IC3). IEEE, pp 1–6

    Google Scholar 

  38. Mittal H, Pal R, Kulhari A, Saraswat M (2016) Chaotic kbest gravitational search algorithm (cKGSA). In: Proceedings of IEEE international conference on contemporary computing. IEEE, pp 1–6

    Google Scholar 

  39. Ashish T, Kapil S, Manju B (2018) Parallel bat algorithm-based clustering using mapreduce. In: Lecture Notes on networking communication and data knowledge engineering, Springer, pp 73–82

    Google Scholar 

  40. Tripathi K, Sharma K, Bala M (2018) A novel clustering method using enhanced grey wolf optimizer and mapreduce. Big Data Res

    Google Scholar 

  41. Pandey C, Rajpoot DS, Saraswat M (2017) Twitter sentiment analysis using hybrid cuckoo search method. Inf Process Manag 53:764–779

    Article  Google Scholar 

  42. Mittal H, Saraswat M (2018) An optimum multi-level image thresholding segmentation using non-local means 2d histogram and exponential kbest gravitational search algorithm. Eng Appl Artif Intell 71:226–235

    Article  Google Scholar 

  43. Chakraborty A, Kar AK (2017) Swarm intelligence: a review of algorithms. In: Nature-inspired computing and optimization. Springer, pp 475–494

    Google Scholar 

  44. Bansal N, Kumar S, Tripathi A (2016) Application of artificial bee colony algorithm using hadoop. In: Proceedings of IEEE international conference on computing for sustainable global development. IEEE, pp 3615–3619

    Google Scholar 

  45. Gupta V, Singh A, Sharma K, Mittal H (2018) A novel differential evolution test case optimisation (detco) technique for branch coverage fault detection. In: Smart computing and informatics. Springer, pp 245–254

    Google Scholar 

  46. Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver press

    Google Scholar 

  47. Srinivas M, Patnaik LM (1994) Genetic algorithms: a survey. Computer 27:17–26

    Google Scholar 

  48. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  Google Scholar 

  49. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766

    Google Scholar 

  50. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  51. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  52. Gao S, Vairappan C, Wang Y, Cao Q, Tang Z (2014) Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl Math Comput 231:48–62

    MathSciNet  MATH  Google Scholar 

  53. Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  54. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Stochastic algorithms: foundations and applications. Springer, Berlin Heidelberg, pp 169–178

    Google Scholar 

  55. Mahmood F, Borders D, Chen R, McKay GN, Salimian KJ, Baras A, Durr NJ (2018) Deep adversarial training for multi-organ nuclei segmentation in histopathology images. arXiv preprint: arXiv:1810.00236

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venubabu Rachapudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rachapudi, V., Lavanya Devi, G., Neelapu, R. (2020). A Nuclei Segmentation Method Based on Optimal Fuzzy Clustering Using Salp Swarm Algorithm for Histopathological Images. In: Kumar, A., Paprzycki, M., Gunjan, V. (eds) ICDSMLA 2019. Lecture Notes in Electrical Engineering, vol 601. Springer, Singapore. https://doi.org/10.1007/978-981-15-1420-3_190

Download citation

Publish with us

Policies and ethics