Skip to main content

The Hardware Design Prospective of Object Detection by Using Background Subtraction Techniques: An Analytical Review

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1053))

  • 1291 Accesses

Abstract

Speed and precision are two important metrics which plays crucial role in real-time video processing systems. Detection of objects is a fundamental process of an intelligent video processing system. Due to increased price and complications of serial implementation of general purpose processors, it does not lead to a good choice for real-time surveillance system. The parallel processing capability and flexibility of field programmable gate array (FPGA) are a big advantage in this field. The aim of this paper is to present the hardware design prospective of object detection by using background subtraction techniques implemented on FPGA which can be used in a video processing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast retina keypoint. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 510–517 (2012)

    Google Scholar 

  2. Barnich, O., Van Droogenbroeck, M.: ViBE: A powerful random technique to estimate the background in video sequences. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing—Proceedings, pp. 945–948 (2009)

    Google Scholar 

  3. Bhattacharjee, K., Tiwari, A.K.S.: Block matching algorithm based on hybridization of harmony search and differential evolution for motion estimation in video compression. In: Proceedings of SoCTA, pp. 625–635 (2016)

    Google Scholar 

  4. Bilal, M., Khan, A., Khan, M.U.K., Kyung, C.M.: A low-complexity pedestrian detection framework for smart video surveillance systems. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2260–2273 (2017)

    Article  Google Scholar 

  5. Bouwmans, T., El Baf, F., Vachon, B.: Background modeling using mixture of gaussians for foreground detection—a survey. Recent. Pat.S Comput. Sci. 1(3), 219–237 (2008)

    Article  Google Scholar 

  6. Cherian, S., Singh, C.S., Manikandan, M.: Implementation of real time moving object detection using background subtraction in FPGA. In: 2014 International Conference on Communication and Signal Processing, pp. 867–871 (2014)

    Google Scholar 

  7. Diederichs, C., Zimmermann, S., Fatikow, S.: FPGA-based object detection and classification inside scanning electron microscopes. In: 2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 108–112 (2012)

    Google Scholar 

  8. Dundar, A., Jin, J., Martini, B., Culurciello, E.: Embedded streaming deep neural networks accelerator with applications. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1572–1583 (2017)

    Article  MathSciNet  Google Scholar 

  9. Genovese, M., Napoli, E.: ASIC and FPGA implementation of the gaussian mixture model algorithm for real-time segmentation of high definition video (2014)

    Google Scholar 

  10. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)

    Article  Google Scholar 

  11. Guo, G., Kaye, M.E., Zhang, Y.: Enhancement of Gaussian background modelling algorithm for moving object detection & its implementation on FPGA. In: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 118–122 (2015)

    Google Scholar 

  12. Gupta, V., Singh, P.S.J.: Study and analysis of back-propagation approach in artificial neural network using HOG descriptor for real-time object classification. In: Proceedings of SoCTA, pp. 45–52 (2017)

    Google Scholar 

  13. Jadhav, S., Narvekar, R., Mandawale, A., Elgandelwar, S.: FPGA based object tracking system. In: 2015 Fifth International Conference on Communication Systems and Network Technologies, pp. 826–829 (2015)

    Google Scholar 

  14. Kiran, D., Rasheed, A.I., Ramasangu, H.: FPGA implementation of blob detection algorithm for object detection in visual navigation. In: 2013 International conference on Circuits, Controls and Communications (CCUBE), pp. 1–5 (2013)

    Google Scholar 

  15. Korakoppa, V.P., Mohana, Aradhya, H.V.R.: An area efficient FPGA implementation of moving object detection and face detection using adaptive threshold method. In: 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 1606–1611 (2017)

    Google Scholar 

  16. Kryjak, T., Komorkiewicz, M., Gorgon, M.: FPGA implementation of real-time head-shoulder detection using local binary patterns, SVM and foreground object detection. In: Proceedings of the 2012 Conference on Design and Architectures for Signal and Image Processing, pp. 1–8 (2012)

    Google Scholar 

  17. Kryjak, T., Komorkiewicz, M., Gorgon, M.: Hardware implementation of the PBAS foreground detection method in FPGA. In: 2013 Proceedings of the 20th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 479–484 (2013)

    Google Scholar 

  18. Kyrkou, C., Theocharides, T.: A parallel hardware architecture for real-time object detection with support vector machines. IEEE Trans. Comput. 61(6), 831–842 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kyrkou, C., Ttofis, C., Theocharides, T.: FPGA-accelerated object detection using edge information. In: 2011 21st International Conference on Field Programmable Logic and Applications, pp. 167–170 (2011)

    Google Scholar 

  20. Lee, J., Park, M.: An adaptive background subtraction method based on kernel density estimation. Sensors (Basel, Switzerland) 12(9), 12,279–12,300 (2012)

    Google Scholar 

  21. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2548–2555 (2011)

    Google Scholar 

  22. Li, J., Yin, Y., Liu, X., Xu, D., Gu, Q.: 12,000-fps Multi-object detection using HOG descriptor and SVM classifier. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5928–5933 (2017)

    Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Ma, X., Najjar, W.A., Roy-Chowdhury, A.K.: Evaluation and acceleration of high-throughput fixed-point object detection on FPGAs. IEEE Trans. Circuits Syst. Video Technol. 25(6), 1051–1062 (2015)

    Article  Google Scholar 

  25. Nakahara, H., Yonekawa, H., Sato, S.: An object detector based on multiscale sliding window search using a fully pipelined binarized CNN on an FPGA. In: 2017 International Conference on Field Programmable Technology (ICFPT), pp. 168–175 (2017)

    Google Scholar 

  26. Nandan, D., Kanungo, J., Mahajan, A.: An efficient VLSI architecture design for logarithmic multiplication by using the improved operand decomposition. Integr. VLSI J. 58, 134–141 (2017)

    Article  Google Scholar 

  27. Nandan, D., Kanungo, J., Mahajan, A.: An error-efficient Gaussian filter for image processing by using the expanded operand decomposition logarithm multiplication. J. Ambient. Intell. Hum. Ized Comput. (2018). https://doi.org/10.1007/s12652-018-0933-x

  28. Pagire, V.R., Kulkarni, C.V.: FPGA based moving object detection. In: 2014 International Conference on Computer Communication and Informatics, pp. 1–4 (2014)

    Google Scholar 

  29. Popa, S., Crookes, D., Miller, P.: Hardware acceleration of background modeling in the compressed domain. IEEE Trans. Inf. Forensics Secur. 8(10), 1562–1574 (2013)

    Article  Google Scholar 

  30. Rohilla, R., Raj, A., Kejriwal, S., Kapoor, R.: FPGA accelerated abandoned object detection. In: 2016 International Conference on Computational Techniques in Information and Communication Technologies, ICCTICT 2016—Proceedings, pp. 302–306 (2016)

    Google Scholar 

  31. Sérot, J., Maggiani, L., Berry, F., Bourrasset, C.: Dataflow object detection system for FPGA-based smart camera. IET Circuits Devices Syst. 10(4), 280–291 (2016)

    Article  Google Scholar 

  32. Zhao, J., Huang, X., Massoud, Y.: An efficient real-time FPGA implementation for object detection. In: 2014 IEEE 12th International New Circuits and Systems Conference, NEWCAS 2014, vol. 2, pp. 313–316 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushal Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, K., Nandan, D., Mishra, R.K. (2020). The Hardware Design Prospective of Object Detection by Using Background Subtraction Techniques: An Analytical Review. In: Pant, M., Sharma, T., Verma, O., Singla, R., Sikander, A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1053. Springer, Singapore. https://doi.org/10.1007/978-981-15-0751-9_39

Download citation

Publish with us

Policies and ethics