Skip to main content

A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network

  • Chapter
  • First Online:
Applied Nature-Inspired Computing: Algorithms and Case Studies

Abstract

This chapter presents an adapted bat-inspired algorithm (ABA) besides a search space shrinking (SSS) in the frame of an efficient hybrid algorithm (EHA) for transmission network expansion planning (TEP). The network losses considered in the comprehensive efficient application of EHA to a real system with large-scale. In this approach, ABA handles the discrete variables of TEP. The evaluation of the fitness function as well as the planning options are via an optimal power flow. The SSS technique has a crucial role in the definition of ABA initial candidates, thereof considerably reduction of solution search space, thus the computational performance of the proposed ABA. The evaluation of Southern Brazilian system validates the proposed approach in comparison to the other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis, M. H. A., Dempster, M. A. H., Sethi, S. P., & Vermes, D. (1987). Optimal capacity expansion under uncertainty. Advances in Applied Probability, 19(1), 156–176.

    Article  MathSciNet  Google Scholar 

  2. Hemmati, R., Hooshmand, R. A., & Khodabakhshian, A. (2013). Comprehensive review of generation and transmission expansion planning. IET Generation, Transmission and Distribution, 7(9), 955–964.

    Article  Google Scholar 

  3. Dewani, B., Daigavane, M. B., & Zadgaonkar, A. S. (2012, December). A review of various computational intelligence techniques for transmission network expansion planning. In 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1–5). IEEE.

    Google Scholar 

  4. Dey, N. (2018). Advancements in applied metaheuristic computing (pp. 978–1). Hershey, PA: IGI Global.

    Google Scholar 

  5. Gupta, N., Patel, N., Tiwari, B. N., & Khosravy, M. (2018). Genetic algorithm based on enhanced selection and log-scaled mutation technique. In Proceedings of the Future Technologies Conference (pp. 730–748). Springer.

    Google Scholar 

  6. Singh, G., Gupta, N., & Khosravy, M. (2015). New crossover operators for real coded genetic algorithm (RCGA). In 2015 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS) IEEE (pp. 135–140).

    Google Scholar 

  7. Gupta, N., Khosravy, M., Patel, N., & Sethi, I. K. (2018). Evolutionary optimization based on biological evolution in plants. Procedia Computer Science, 126, 146–155. Elsevier.

    Article  Google Scholar 

  8. Chatthaworn, R., & Chaitusaney, S. (2015). Improving method of robust transmission network expansion planning considering intermittent renewable energy generation and loads. IET Generation, Transmission and Distribution, 9(13), 1621–1627.

    Article  Google Scholar 

  9. Florez, C. A. C., Garcia, G. A. M., & Salcedo, A. S. (2016). Expansion of transmission networks considering large wind power penetration and demand uncertainty. IEEE Latin America Transactions, 14(3), 1235–1244.

    Article  Google Scholar 

  10. Ugranli, F., & Karatepe, E. (2016). Transmission expansion planning for wind turbine integrated power systems considering contingency. IEEE Transactions on Power Systems, 31(2), 1476–1485.

    Article  Google Scholar 

  11. Mahmoudabadi, A., & Rashidinejad, M. (2013). An application of hybrid heuristic method to solve concurrent transmission network Expansion and reactive power planning. International Journal of Electrical Power & Energy Systems, 45(1), 71–77.

    Article  Google Scholar 

  12. Sensarma, P. S., Rahmani, M., & Carvalho, A. (2002). A comprehensive method for optimal expansion planning using particle swarm optimization. Power engineering society winter meeting, 2, 1317–1322.

    Article  Google Scholar 

  13. Da Rocha, M. C., & Saraiva, J. T. (2013). A discrete evolutionary PSO based approach to the multiyear transmission expansion planning problem considering demand uncertainties. International Journal of Electrical Power & Energy Systems, 45(1), 427–442.

    Article  Google Scholar 

  14. Kamyab, G. R., Fotuhi-Firuzabad, M., & Rashidinejad, M. (2014). A PSO based approach for multi-stage transmission expansion planning in electricity markets. International Journal of Electrical Power & Energy Systems, 54, 91–100.

    Article  Google Scholar 

  15. da Silva, A. M. L., Freire, M. R., & Honório, L. M. (2016). Transmission expansion planning optimization by adaptive multi-operator evolutionary algorithms. Electric Power Systems Research, 133, 173–181.

    Article  Google Scholar 

  16. El-Bages, M. S., & Elsayed, W. T. (2017). Social spider algorithm for solving the transmission expansion planning problem. Electric Power Systems Research, 143, 235–243.

    Article  Google Scholar 

  17. Jahromi, S. N., Askarzadeh, A., & Abdollahi, A. (2017). Modelling probabilistic transmission expansion planning in the presence of plug-in electric vehicles uncertainty by multi-state Markov model. IET Generation, Transmission and Distribution, 11(7), 1716–1725.

    Article  Google Scholar 

  18. Shivaie, M., & Ameli, M. T. (2014). An implementation of improved harmony search algorithm for scenario-based transmission expansion planning. Soft Computing, 18(8), 1615–1630.

    Article  Google Scholar 

  19. de Oliveira, L. E., Freitas, F. D., da Silva, I. C., & Gomes, P. V. (2017, September). Dynamic and static transmission network expansion planning via harmony search and branch & bound on a hybrid algorithm. In Portuguese Conference on Artificial Intelligence (pp. 271–282). Springer, Cham.

    Google Scholar 

  20. Gallego, R. A., Monticelli, A., & Romero, R. (1998). Comparative studies on nonconvex optimization methods for transmission network expansion planning. IEEE Transactions on Power Systems, 13(3), 822–828. https://doi.org/10.1109/59.708680.

    Article  Google Scholar 

  21. Alguacil, N., Motto, A. L., & Conejo, A. J. (2003). Transmission expansion planning: A mixed-integer LP approach. IEEE Transactions on Power Systems, 18(3), 1070–1077. https://doi.org/10.1109/TPWRS.2003.814891.

    Article  Google Scholar 

  22. Leite da Silva, A. M., Rezende, L. S., Honorio, L. M., & Manso, L. A. F. (2011). Performance comparison of metaheuristics to solve the multi-stage transmission expansion planning problem. IET Generation, Transmission and Distribution, 5(3), 360–367. https://doi.org/10.1049/iet-gtd.2010.0497.

    Article  Google Scholar 

  23. Rocha, M. C., & Saraiva, J. T. (2012). A multiyear dynamic transmission expansion planning model using a discrete based EPSO approach. Electric Power Systems Research, 93, 83–92. ISSN 0378-7796. https://doi.org/10.1016/j.epsr.2012.07.012.

    Article  Google Scholar 

  24. Zhang, H., Vittal, V., Heydt, G. T., & Quintero, J. (2012). A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning. IEEE Transactions on Power Systems, 27(2), 1125–1133. https://doi.org/10.1109/TPWRS.2011.2178000.

    Article  Google Scholar 

  25. de Oliveira L. E., Freitas F. D., da Silva I. C., & Gomes P. V. (2017). Dynamic and static transmission network expansion planning via harmony search and branch & bound on a hybrid algorithm. In: E. Oliveira, J. Gama, Z. Vale, & H. Lopes Cardoso (Eds.), Progress in artificial intelligence. EPIA 2017. Lecture Notes in Computer Science, Vol. 10423. Cham: Springer.

    Google Scholar 

  26. Gupta, N., Khosravy, M., Patel, N., & Senjyu, T. (2018). A bi-level evolutionary optimization for coordinated transmission expansion planning. IEEE Access, 6, 48455–48477.

    Article  Google Scholar 

  27. Gupta, N., Khosravy, M., Saurav, K., Sethi, I. K., & Marina, N. (2018). Value assessment method for expansion planning of generators and transmission networks: A non-iterative approach. Springer, Electrical Engineering, 100(3), 1405–1420.

    Article  Google Scholar 

  28. De Oliveira, E. J., Moraes, C. A., Oliveira, L. W., Honório, L. M., & Poubel, R. P. B. (2018). Efficient hybrid algorithm for transmission expansion planning. Electrical Engineering, 1–13.

    Google Scholar 

  29. Nadira, R., Austria, R. R., Dortolina, C. A., & Lecaros, F. (2003). Transmission planning in the presence of uncertainties. In 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491) (Vol. 1, pp. 289–294). https://doi.org/10.1109/pes.2003.1267185.

  30. Cedeño, E. B., & Arora, S. (2011). Performance comparison of transmission network expansion planning under deterministic and uncertain conditions. International Journal of Electrical Power & Energy Systems, 33(7), 1288–1295. ISSN 0142-0615. https://doi.org/10.1016/j.ijepes.2011.05.005.

    Article  Google Scholar 

  31. Delgado, D., & Claro, J. (2013). Transmission network expansion planning under demand uncertainty and risk aversion. International Journal of Electrical Power & Energy Systems, 44(1), 696–702. ISSN 0142-0615. https://doi.org/10.1016/j.ijepes.2012.08.033.

    Article  Google Scholar 

  32. D. Munoz, D. F., Watson, J.-P., Hobbs, B. F. (2015). Optimizing your options: extracting the full economic value of transmission when planning under uncertainty. The Electricity Journal, 28(5), 26–38. ISSN 1040-6190. https://doi.org/10.1016/j.tej.2015.05.002.

    Article  Google Scholar 

  33. Liu, L., Cheng, H. Z., Yao, L. Z., Ma, Z. L., & Bazargan, M. (2013). Multi-objective multi-stage transmission network expansion planning considering life cycle cost and risk value under uncertainties. International Transactions on Electrical Energy Systems, 23(3), 438–450.

    Article  Google Scholar 

  34. Akbari, T., Rahimi-Kian, A., & Bina, M. T. (2012). Security-constrained transmission expansion planning: A stochastic multi-objective approach. International Journal of Electrical Power & Energy Systems, 43(1), 444–453.

    Article  Google Scholar 

  35. Kostiv, O., Demydov, I., Makarenko, A., & Tverdohlib, M. (2018). Metaheuristics in cloud platform traffic engineering. In 2018 14th International Conference on Advanced Trends in Radio electronics, Telecommunications and Computer Engineering (TCSET) (pp. 533–537). https://doi.org/10.1109/tcset.2018.8336258.

  36. Rajinikanth, V., Satapathy, S. C., Dey, N., Fernandes, S. L., & Manic, K. S. (2019). Skin melanoma assessment using Kapur’s entropy and level set—A study with bat algorithm. In Smart intelligent computing and applications (pp. 193–202). Singapore: Springer.

    Google Scholar 

  37. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In: J. R. Gonzalez, D. A. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor (Eds.), Nature inspired cooperative strategies for optimization (NICSO 2010). Studies in Computational Intelligence (SCI) (Vol. 284, Chap. 6, pp. 65–74). Berlin, Germany: Springer (2010). https://doi.org/10.1007/978-3-642-12538-6_6.

    Chapter  Google Scholar 

  38. Gandomi, A. H., & Yang, X. S. (2014). Chaotic bat algorithm. Journal of Computational Science (2), 224–232. https://doi.org/10.1016/j.jocs.2013.10.002. http://www.sciencedirect.com/science/article/pii/S1877750313001099.

    Article  MathSciNet  Google Scholar 

  39. Wang, X., Wang, W., & Wang, Y. (2013). An adaptive bat algo-rithm. In D. S. Huang, K. H. Jo, Y. Q. Zhou, & K. Han (Eds.), Intelligent computing theories and technology (pp. 216–223). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  40. Nguyen, T. T., Pan, J. S., Dao, T. K., Kuo, M. Y., & Horng, M. F. (2014). Hybrid bat algorithm with artificial bee colony. In J. S. Pan, V. Snasel, E. S. Corchado, A. Abraham, & S. L. Wang (Eds.), Intelligent data analysis and its applications (Vol. II, pp. 45–55). Cham: Springer.

    Google Scholar 

  41. Mirjalili, S., Mirjalili, S. M., & Yang, X. S. (2014). Binary bat algorithm. Neural Computing and Applications, 25(3), 663–681. https://doi.org/10.1007/s00521-013-1525-5.

    Article  Google Scholar 

  42. Murugan, R., Mohan, M. R., Rajan, C. C. A., Sundari, P. D., & Arunachalam, S. (2018). Hybridizing bat algorithm with artificial bee colony for combined heat and power economic dispatch. Applied Soft Computing, 72, 189–217.

    Article  Google Scholar 

  43. Romero, R., Monticelli, A., Garcia, A., & Haffner, S. (2002). Test systems and mathematical models for transmission network expansion planning. IEE Proceedings-Generation, Transmission and Distribution, 149(1), 27–36.

    Article  Google Scholar 

  44. de Mendonça, I. M., Junior, I. C. S., Dias, B. H., & Marcato, A. L. (2016). Identification of relevant routes for static expansion planning of electric power transmission systems. Electric Power Systems Research, 140, 769–775.

    Article  Google Scholar 

  45. Mendonca, I. M., Ivo, C. S., Marcato, A. L., & Dias, B. H. (2013, June). Transmission expansion optimization via constructive heuristic technique. In PowerTech (POWERTECH), 2013 IEEE Grenoble (pp. 1–5). IEEE.

    Google Scholar 

  46. De Mendonça, I. M., Junior, I. C. S., & Marcato, A. L. (2014). Static planning of the expansion of electrical energy transmission systems using particle swarm optimization. International Journal of Electrical Power & Energy Systems, 60, 234–244.

    Article  Google Scholar 

  47. de Oliveira, E. J., Da Silva, I. C., Pereira, J. L. R., & Carneiro, S. (2005). Transmission system expansion planning using a sigmoid function to handle integer investment variables. IEEE Transactions on Power Systems, 20(3), 1616–1621.

    Article  Google Scholar 

  48. Rahmani, M., Romero, R., & Rider, M. J. (2013). Strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem. IEEE Transactions on Power Systems, 28(3), 2164–2173.

    Article  Google Scholar 

  49. Monticelli, A., Santos, A., Pereira, M. V. F., Cunha, S. H., Parker, B. J., & Praca, J. C. G. (1982). Interactive transmission network planning using a least-effort criterion. IEEE Transactions on Power Apparatus and Systems, 10, 3919–3925.

    Article  Google Scholar 

  50. Kishore, T. S., & Singal, S. K. (2014). Optimal economic planning of power transmission lines: A review. Renewable and Sustainable Energy Reviews, 39, 949–974.

    Article  Google Scholar 

  51. Rider, M. J., Gallego, L. A., Romero, R., & Garcia, A. V. (2007, June). Heuristic algorithm to solve the short term transmission network expansion planning. In Power Engineering Society General Meeting, 2007 (pp. 1–7). IEEE.

    Google Scholar 

  52. Meng, X. B., Gao, X. Z., Liu, Y., & Zhang, H. (2015). A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization. Expert Systems with Applications, 42(17–18), 6350–6364.

    Article  Google Scholar 

  53. Satapathy, S. C., Raja, N. S. M., Rajinikanth, V., Ashour, A. S., & Dey, N. (2016). Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Computing and Applications, 1–23.

    Google Scholar 

Download references

Acknowledgements

Our special acknowledgements go to the Brazilian National Research Council (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), the Foundation for Supporting Research in Minas Gerais, and Electric Power National Institute (INERGE) for their great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khosravy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moraes, C.A., De Oliveira, E.J., Khosravy, M., Oliveira, L.W., Honório, L.M., Pinto, M.F. (2020). A Hybrid Bat-Inspired Algorithm for Power Transmission Expansion Planning on a Practical Brazilian Network. In: Dey, N., Ashour, A., Bhattacharyya, S. (eds) Applied Nature-Inspired Computing: Algorithms and Case Studies. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-13-9263-4_4

Download citation

Publish with us

Policies and ethics