Skip to main content

Multimodal Segmentation of Brain Tumours in Volumetric MRI Scans of the Brain Using Time-Distributed U-Net

  • Conference paper
  • First Online:
Computational Intelligence in Pattern Recognition

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 999))

Abstract

Brain tumour segmentation poses a challenging task even in the eyes of a trained medical practitioner. Traditional machine learning algorithms require hand-coding features from images before they can learn to identify the regions. Deep learning can solve the problem of detecting tumours with precision and even segment it. Neural networks can learn a hierarchical representation of features from the data by itself. We use a time-distributed architecture for U-Net based deep convolutional neural networks (TD-UNET). We tested our network against the MICCAI BRATS 2015 dataset that comprised 220 high-graded gliomas (HGG) and 54 low-graded gliomas (LGG) and yielded a test case accuracy of 58.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dasgupta, A., Gupta, T., Jalali, R.: Indian data on central nervous tumours: a summary of published works. South Asian J. Cancer (2016)

    Google Scholar 

  2. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. In: Neural Computation (1989)

    Article  Google Scholar 

  3. LeCun, Y., Bottou, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE (1998)

    Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS 2012), vol. 25 (2012)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, US, 27–30 June 2016

    Google Scholar 

  6. Luttrell, S.: Hierarchical self-organising networks. In: 1989 First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313), London, UK (1989)

    Google Scholar 

  7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507, 28 Jul 2006

    Article  MathSciNet  Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA (2005)

    Google Scholar 

  10. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision (1999)

    Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv preprint, arXiv:1311.2524v5 [cs.CV], 22 Oct 2014

  12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. arXiv preprint arXiv:1506.02640v5 [cs.CV], 9 May 2016

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597v1 [cs.CV], 18 May 2015

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. arXiv preprint arXiv:1411.4038v2 [cs.CV], 8 Mar 2015

  15. Pan, T., Wang, B., Ding, G., Yong, J.-H.: Fully convolutional neural networks with full-scale-features for semantic segmentation. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) (2017)

    Google Scholar 

  16. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumour detection and segmentation using U-Net based fully convolutional networks. arXiv preprint arXiv:1705.03820v3 [cs.CV], 3 Jun 2017

  17. Erden, B., Gamboa, N., Wood, S.: 3D Convolutional Neural Network for Brain Tumor Segmentation, Student Report in cs231n 526. Stanford University (2017)

    Google Scholar 

  18. MICCAI BRATS 2015 dataset. http://www.braintumorsegmentation.org/

  19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1928–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic gradient descent. arXiv preprint arXiv:1412.6980v9 [cs.LG], 30 Jan 2017

  21. Pinheiro, P.H.O., Collobert, R.: Recurrent convolutional neural networks for scene parsing. arXiv preprint arXiv:1306.2795v1 [cs.CV], 12 Jun 2013

  22. Pinheiro, P.H.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. arXiv preprint arXiv:1411.6228v3 [cs.CV], 24 Apr 2015

  23. Graves, A., Fernandez, S., Schmidhuber, J.: Multi-dimensional recurrent neural networks. arXiv preprint arXiv:0705.2011v1 [cs.AI], 14 May 2007

  24. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. arXiv preprint arXiv:1506.07452v1 [cs.CV], 24 Jun 2015

  25. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    Google Scholar 

  26. RMSProp. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Download references

Acknowledgements

We would like to show our gratitude towards MICCAI BraTS for providing their 2015 dataset as open source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeet Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dutta, J., Chakraborty, D., Mondal, D. (2020). Multimodal Segmentation of Brain Tumours in Volumetric MRI Scans of the Brain Using Time-Distributed U-Net. In: Das, A., Nayak, J., Naik, B., Pati, S., Pelusi, D. (eds) Computational Intelligence in Pattern Recognition. Advances in Intelligent Systems and Computing, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-13-9042-5_62

Download citation

Publish with us

Policies and ethics