Skip to main content

Characterization of Intermediate Wetting States and Anisotropic Sliding on Micro-directional Grooved Surfaces

Fly Cutting Technology for Ultra-precision Machining

Part of the book series: Precision Manufacturing ((PRECISION))

  • 31 Accesses

Abstract

The wetting state of a water droplet remarkably affecting its sliding behavior is characterized by the droplet boundary contact line. This chapter presents experimental studies of the apparent contact angle against droplet deposition time, as well as contact angle hysteresis, and compares the results with the Wenzel and Cassie–Baxter models. Observations indicate that different intermediate wetting phenomena exist. The sliding performance of a droplet under intermediate wetting states is also investigated. It is found that the droplet does not slide under partial wetting but slides when the side walls of the grooves have been wetted by part of the droplet. Furthermore, the droplets under different wetting states on surfaces with varied groove spacing and widths, under the same groove spacing to width ratio, present altered sliding performance before rolling off from the micro-grooves in a parallel direction. This study broadens the characterization method of intermediate wetting states, which determines the condition of anisotropic sliding on micro-grooves. The findings have great potential for application to artificial self-cleaning surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bormashenko E (2015) Progress in understanding wetting transitions on rough surfaces. Adv Colloid Interf Sci 222:92–103

    Article  Google Scholar 

  • Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56(1):1–108

    Article  Google Scholar 

  • Bhushan B, Jung YC, Koch K (2009) Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Trans R Soc A 367:1631–1672

    Article  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546

    Article  Google Scholar 

  • Chen Y, He B, Lee JH, Patankar NA (2005) Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci 281(2):458–464

    Article  Google Scholar 

  • Chen F, Zhang DS, Yang Q, Wang XH, Dai BJ, Li XM, Hao XQ, Ding YC, Si JH, Hou X (2011) Anisotropic wetting on microstrips surface fabricated by femtosecond laser. Langmuir 27(1):359–365

    Article  Google Scholar 

  • Cheng CT, Zhang GQ, To S (2016) Wetting characteristics of bare micro-patterned cyclic olefin copolymer surfaces fabricated by ultra-precision raster milling. RSC Adv 6:1562–1570

    Article  Google Scholar 

  • Choi W, Tuteja A, Mabry JM, Cohen RE, McKinley GH (2009) A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J Colloid Interface Sci 339:208–216

    Article  Google Scholar 

  • Chung JY, Youngblood JP, Stafford CM (2007) Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3:1163–1169

    Article  Google Scholar 

  • Erbil HY (2014) The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review. Surf Sci Rep 69:325–365

    Article  Google Scholar 

  • Extrand CW (2003) Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir 19(9):3793–3796

    Article  Google Scholar 

  • Gao LC, McCarthy TJ (2007) How wenzel and cassie were wrong. Langmuir 23(7):3762–3765

    Article  Google Scholar 

  • Ge P, Wang SL, Liu WD, Wang TQ, Yu NZ, Xue PJ, Chen HX, Shen HZ, Zhang JH, Yang B (2017) Anisotropic wetting of water on patterned asymmetric nanostructure arrays. Adv Mater Interfaces 4(12):1700034

    Article  Google Scholar 

  • Jansen HP, Bliznyuk O, Kooij ES, Poelsema B, Zandvliet HJW (2012) Simulating anisotropic droplet shapes on chemically striped patterned surfaces. Langmuir 28(1):499–505

    Article  Google Scholar 

  • Jansen HP, Zandvliet HJW, Kooij ES (2015) Evaporation of elongated droplets on chemically stripe-patterned surfaces. Int J Heat Mass Transf 82:537–544

    Article  Google Scholar 

  • Jena RK, Yue CY (2012) Cyclic olefin copolymer based microfluidic devices for biochip applications: ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics 6(1):12

    Article  Google Scholar 

  • Jiang Y, Hirvi JT, Suvanto M, Pakkanen TA (2014) Molecular dynamic simulations of anisotropic wetting and embedding on functionalized polypropylene surfaces. Chem Phys 429:44–50

    Article  Google Scholar 

  • Kooij ES, Jansen HP, Bliznyuk O, Poelsema B, Zandvliet HJW (2012) Directional wetting on chemically patterned substrates. Colloids Surf A Physicochem Eng Asp 413:328–333

    Article  Google Scholar 

  • Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2(7):457–460

    Article  Google Scholar 

  • Lee SG, Lim HS, Lee DY, Kwak D, Cho K (2013) Tunable anisotropic wettability of rice leaf-like wavy surfaces. Adv Funct Mater 23(5):547–553

    Article  Google Scholar 

  • Li W, Fang GP, Lij YF, Qiao GJ (2008) Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure. J Phys Chem B 112(24):7234–7243

    Article  Google Scholar 

  • Luo C, Xiang MM, Liu XC, Wang H (2011) Transition from Cassie-Baxter to Wenzel States on microline-formed PDMS surfaces induced by evaporation or pressing of water droplets. Microfluid Nanofluid 10:831–842

    Article  Google Scholar 

  • Lv CJ, Yang CW, Hao PF, He F, Zheng QS (2010) Sliding of water droplets on microstructured hydrophobic surfaces. Langmuir 26(11):8704–8708

    Article  Google Scholar 

  • Ma CH, Bai SX, Peng XD, Meng YG (2013) Anisotropic wettability of laser micro-grooved SiC surfaces. Appl Surf Sci 284:930–935

    Article  Google Scholar 

  • Marmur A (2009) Solid-surface characterization by wetting, Annu. Rev. Mater. Res, vol 39. Annual Reviews, Palo Alto, pp. 473–489

    Google Scholar 

  • McHale G, Newton MI, Shirtcliffe NJ (2009) Dynamic wetting and spreading and the role of topography. J Phys Condens Matter 21(46):464122

    Article  Google Scholar 

  • Meiron TS, Marmur A, Saguy IS (2004) Contact angle measurement on rough surfaces. J Colloid Interface Sci 274(2):637–644

    Article  Google Scholar 

  • Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13):5754–5760

    Article  Google Scholar 

  • Murakami D, Jinnai H, Takahara A (2014) Wetting transition from the cassie-baxter state to the wenzel state on textured polymer surfaces. Langmuir 30(8):2061–2067

    Article  Google Scholar 

  • Neuhaus S, Spencer ND, Padeste C (2012) Anisotropic wetting of microstructured surfaces as a function of surface chemistry. ACS Appl Mater Interfaces 4(1):123–130

    Article  Google Scholar 

  • Nosonovsky M (2007) Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis. J Chem Phys 126:224701

    Article  Google Scholar 

  • Park CI, Jeong HE, Lee SH, Cho HS, Suh KY (2009) Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. J Colloid Interface Sci 336(1):298–303

    Article  Google Scholar 

  • Patankar NA (2003) On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19(4):1249–1253

    Article  Google Scholar 

  • Quere D (2005) Non-sticking drops. Rep Prog Phys 68:2495

    Article  Google Scholar 

  • Ren WQ (2014) Wetting transition on patterned surfaces: transition states and energy barriers. Langmuir 30(10):2879–2885

    Article  Google Scholar 

  • Reyssat M, Yeomans JM, Quere D (2008) Impalement of fakir drops. Europhys Lett 81:26006

    Article  Google Scholar 

  • Sahoo BN, Kandasubramanian B (2014) Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv 4:22053–22093

    Article  Google Scholar 

  • Shirtcliffe NJ, McHale G, Newton MI, Perry CC (2005) Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir 21(3):937–943

    Article  Google Scholar 

  • Sommers AD, Jacobi AM (2008) Wetting phenomena on micro-grooved aluminum surfaces and modeling of the critical droplet size. J Colloid Interface Sci 328(2):402–411

    Article  Google Scholar 

  • Tanaka D, Buenger D, Hildebrandt H, Moeller M, Groll J (2013) Unidirectional control of anisotropic wetting through surface modification of PDMS microstructures. Langmuir 29(40):12331–122336

    Article  Google Scholar 

  • Tie L, Guo ZG, Liu WM (2015) Anisotropic wetting properties on various shape of parallel grooved microstructure. J Colloid Interface Sci 453:142–159

    Google Scholar 

  • Wang S, Jiang L (2007) Definition of superhydrophobic states. Adv Mater 19(21):3423–3424

    Article  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  Google Scholar 

  • Xia DY, Johnson LM, Lopez GP (2012) Anisotropic wetting surfaces with one-dimensional and directional structures: fabrication approaches, wetting properties and potential applications. Adv Mater 24(10):1287–1302

    Article  Google Scholar 

  • Yong JL, Yang Q, Chen F, Zhang DS, Farooq U, Du GQ, Hou X (2014) A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A 2:5499–5507

    Article  Google Scholar 

  • Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18(15):5818–5822

    Article  Google Scholar 

  • Zhang FX, Low HY (2007) Anisotropic wettability on imprinted hierarchical structures. Langmuir 23(14):7793–7798

    Article  Google Scholar 

  • Zhang PC, Liu HL, Meng JX, Yang G, Liu XL, Wang ST, Jiang L (2014) Grooved organogel surfaces towards anisotropic sliding of water droplets. Adv Mater 26(19):3131–3135

    Article  Google Scholar 

  • Zhao H, Law KY (2012) Directional self-cleaning superoleophobic surface. Langmuir 28(32):1182–11818

    Google Scholar 

  • Zhao H, Law KY, Sambhy V (2011) Fabrication, surface properties, and origin of superoleophobicity for a model textured surface. Langmuir 27(10):5927–5935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheung Tong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cheng, C.T., To, S. (2023). Characterization of Intermediate Wetting States and Anisotropic Sliding on Micro-directional Grooved Surfaces. In: To, S., Wang, S. (eds) Fly Cutting Technology for Ultra-precision Machining. Precision Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-3261-6_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3261-6_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3261-6

  • Online ISBN: 978-981-13-3261-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Characterization of Intermediate Wetting States and Anisotropic Sliding on Micro-directional Grooved Surfaces
    Published:
    08 June 2023

    DOI: https://doi.org/10.1007/978-981-13-3261-6_17-2

  2. Original

    Characterization of Intermediate Wetting States and Anisotropic Sliding on Micro-directional Grooved Surfaces
    Published:
    22 April 2023

    DOI: https://doi.org/10.1007/978-981-13-3261-6_17-1