Skip to main content

Complexation with Transition Metals

  • Living reference work entry
  • First Online:
Handbook of Fullerene Science and Technology
  • 75 Accesses

Abstract

The electron-deficiency fullerenes that resemble olefins are facile to react with nucleophilic transition metals to form related complexes with novel structures and unique properties. So far, mononuclear, multinuclear metal complexes and ionic salts of fullerenes have been prepared by the reaction with metal clusters. The coordination reactions of C60, higher fullerenes and metallofullerenes have usually shown very high regioselectivity to afford mono-, bis-, and even tetra- and hexa-adducts. Various crystallographic structures and spectroscopic results demonstrate that the mononuclear cluster binds to a C–C bond or a single carbon atom on the fullerene, forming η2 or η1 coordination, respectively, leading to the distortion of fullerene cage. In the multinuclear metal complexes of fullerenes, the metal clusters except for Ir4(CO)8(PMe3)4 will uniformly coordinate with the fullerenes in η2 fashion, such as the typical μ3222-C60 coordination seen in trinuclear complexes, and the binding mode could undergo a transformation to a mixed coordination of η2 and η1 through the insertion of ligands into the multinuclear clusters. Remarkably, some metal clusters act like bridges to link fullerenes, forming dimers and even organometallic fullerene polymers. In addition, the electrochemical studies of η2-C60 complexes indicate that the redox process is related to the reduction of fullerenes and the oxidation of metal clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bowles FL, Olmstead MM, Balch AL (2014) Preparation and crystallographic characterization of C601-Ru(CO)25-C5H5)}2: a locally crowded organometallic fullerene without the usual η2-bonding. J Am Chem Soc 136:3338–3341. https://doi.org/10.1021/ja4120677

    Article  CAS  PubMed  Google Scholar 

  2. Zheng H, Zhao X, Sakaki S (2017) [2 + 2]-type reaction of metal–metal σ-bond with fullerene forming an η1-C60 metal complex: mechanistic details of formation reaction and prediction of a new η1-C60 metal complex. Inorg Chem 56:6746–6754. https://doi.org/10.1021/acs.inorgchem.7b00902

    Article  CAS  PubMed  Google Scholar 

  3. Zhang S, Brown TL, Du Y, Shapley JR (1993) Metalation of fullerene (C60) with pentacarbonylrhenium radicals. Reversible formation of C60{Re(CO)5}2. J Am Chem Soc 115:6705–6709. https://doi.org/10.1021/ja00068a030

    Article  CAS  Google Scholar 

  4. Xie Y-P, Pan C, Bao L et al (2019) Regioselective coordination of Re2(CO)10 to Y@C2v(9)-C82: an unprecedented η1 complex stabilized by intramolecular electron transfer. Organometallics 38:2259–2263. https://doi.org/10.1021/acs.organomet.9b00209

    Article  CAS  Google Scholar 

  5. Fagan PJ, Ward MD, Calabrese JC (1989) Molecular engineering of solid-state materials: organometallic building blocks. J Am Chem Soc 111:1698–1719. https://doi.org/10.1021/ja00187a024

    Article  CAS  Google Scholar 

  6. Goh S-K, Marynick DS (2001) Ability of fullerenes to act as η6 ligands in transition metal complexes. A comparative PM3(tm)–density functional theory study. J Comput Chem 22:1881–1886. https://doi.org/10.1002/jcc.1138

    Article  CAS  Google Scholar 

  7. Fagan PJ, Calabrese JC, Malone B (1992) Metal complexes of buckminsterfullerene (C60). Acc Chem Res 25:134–142. https://doi.org/10.1021/ar00015a006

    Article  CAS  Google Scholar 

  8. Bashilov VV, Petrovskii PV, Sokolov VI et al (1993) Synthesis, crystal, and molecular structure of the palladium(0)-fullerene derivative (.eta.2-C60)Pd(PPh3)2. Organometallics 12:991–992. https://doi.org/10.1021/om00028a003

    Article  CAS  Google Scholar 

  9. Fagan PJ, Calabrese JC, Malone B (1991) The chemical nature of buckminsterfullerene (C60) and the characterization of a platinum derivative. Science 252:1160–1161. https://doi.org/10.1126/science.252.5009.1160

    Article  CAS  Google Scholar 

  10. Fagan PJ, Calabrese JC, Malone B (1991) A multiply-substituted buckminsterfullerene (C60) with an octahedral array of platinum atoms. J Am Chem Soc 113:9408–9409. https://doi.org/10.1021/ja00024a079

    Article  CAS  Google Scholar 

  11. Lerke SA, Parkinson BA, Evans DH, Fagan PJ (1992) Electrochemical studies on metal derivatives of buckminsterfullerene (C60). J Am Chem Soc 114:7807–7813. https://doi.org/10.1021/ja00046a029

    Article  CAS  Google Scholar 

  12. Lerke SA, Evans DH, Fagan PJ (1995) Voltammetric study of the oxidation of metal derivatives of buckminsterfullerence (C60). Electroanal Chem 383:127–132. https://doi.org/10.1016/0022-0728(94)03630-L

    Article  Google Scholar 

  13. Balch AL, Hao L, Olmstead MM (1996) Patterns of multiple additions to fullerene C70: isolation and structural characterization of [C70{Pt(PPh3)2}4]. Angew Chem Int Ed 35:188–190. https://doi.org/10.1002/anie.199601881

    Article  CAS  Google Scholar 

  14. Balch AL, Catalano VJ, Lee JW (1991) Accumulating evidence for the selective reactivity of the 6-6 ring fusion of fullerene, C60. Preparation and structure of (.eta.2-C60)Ir(CO)Cl(PPh3)2·5C6H6. Inorg Chem 30:3980–3981. https://doi.org/10.1021/ic00021a003

    Article  CAS  Google Scholar 

  15. Balch AL, Olmstead MM (1998) Reactions of transition metal complexes with fullerenes (C60, C70, etc.) and related materials. Chem Rev 98:2123–2166. https://doi.org/10.1021/cr960040e

    Article  CAS  PubMed  Google Scholar 

  16. Balch AL, Lee JW, Noll BC, Olmstead MM (1994) Multiple additions of vaska-type iridium complexes to C60. Preferential crystallization of the “Para” double addition products: C60{Ir(CO)Cl(PMe3)2}2·2C6H6 and C60{Ir(CO)Cl(PEt3)2}2·C6H6. Inorg Chem 33:5238–5243. https://doi.org/10.1021/ic00101a015

    Article  CAS  Google Scholar 

  17. Balch AL, Lee JW, Noll BC, Olmstead MM (1992) A double addition product of C60: C60{Ir(CO)Cl(PMe2Ph)2}2. Individual crystallization of two conformational isomers. J Am Chem Soc 114:10984–10985. https://doi.org/10.1021/ja00053a058

    Article  CAS  Google Scholar 

  18. Balch AL, Catalano VJ, Lee JW, Olmstead MM (1992) Supramolecular aggregation of an (.eta.2-C60) iridium complex involving phenyl chelation of the fullerene. J Am Chem Soc 114:5455–5457. https://doi.org/10.1021/ja00039a084

    Article  CAS  Google Scholar 

  19. Catalano VJ, Parodi N (1997) Reversible C60 binding to dendrimer-containing Ir(CO)Cl(PPh2R)2 complexes. Inorg Chem 36:537–541. https://doi.org/10.1021/ic9612764

    Article  CAS  Google Scholar 

  20. Lee JW, Olmstead MM, Vickery JS, Balch AL (2000) A dumbbell shaped fullerene dimer with an inorganic linker. Addition of C60 and tetracyanoethylene to Ir2(CO)2Cl2(Ph2P(CH2)nPPh2)2 (n=5 or 7). J Clust Sci 11:67–77. https://doi.org/10.1021/ja00053a058

    Article  CAS  Google Scholar 

  21. Balch AL, Catalano VJ, Lee JW et al (1991) (.eta.2-C70)Ir(CO)Cl(PPh3)2: the synthesis and structure of an iridium organometallic derivative of a higher fullerene. J Am Chem Soc 113:8953–8955. https://doi.org/10.1021/ja00023a057

    Article  CAS  Google Scholar 

  22. Balch AL, Ginwalla AS, Lee JW et al (1994) Partial separation and structural characterization of C84 isomers by crystallization of (.eta.2-C84)Ir(CO)Cl(P(C6H5)3)2. J Am Chem Soc 116:2227–2228. https://doi.org/10.1021/ja00084a106

    Article  CAS  Google Scholar 

  23. Balch AL, Lee JW, Noll BC, Olmstead MM (1993) Structural characterization of {(.eta.2-C60)RhH(CO)(PPh3)2}: product of the reaction of fullerene C60 with the hydrogenation catalyst carbonylhydridotris(triphenylphosphine)rhodium. Inorg Chem 32:3577–3578. https://doi.org/10.1021/ic00069a001

    Article  CAS  Google Scholar 

  24. Schreiner S, Gallaher TN, Parsons HK (1994) Synthesis of metal fullerene derivatives from chloro hydrido transition metal complexes. Inorg Chem 33:3021–3022. https://doi.org/10.1021/ic00091a051

    Article  CAS  Google Scholar 

  25. Usatov AV, Peregudova SM, Denisovich LI et al (2000) Exohedral mono- and bimetallic hydride complexes of rhodium and iridium with C60 and C70: syntheses and electrochemical properties. J Organomet Chem 599:87–96. https://doi.org/10.1016/S0022-328X(99)00757-3

    Article  CAS  Google Scholar 

  26. Chernega AN, Green MLH, Haggitt J, Stephens AHH (1998) New transition-metal derivatives of the fullerene C60. J Chem Soc Dalton Trans 755–768. https://doi.org/10.1039/A707618E

  27. Peregudova SM, Denisovich LI, Martynova EV et al (2008) Electrochemical oxidation and reduction of osmium and iridium complexes with fullerene C60. Russ J Electrochem 44:249–253. https://doi.org/10.1134/s102319350802016x

    Article  CAS  Google Scholar 

  28. Hsu H-F, Du Y, Albrecht-Schmitt TE et al (1998) Structural comparison of M(CO)3(dppe)(η2-C60) (M = Mo, W), Mo(CO)3(dppe)(η2-C70), and W(CO)3(dppe)(η2-trans-C2H2(CO2Me)2). Organometallics 17:1756–1761. https://doi.org/10.1021/om971013x

    Article  CAS  Google Scholar 

  29. Song L-C, Zhu Y-H, Hu Q-M (1997) The first fullerene tungsten complex containing a dppb ligand fac/mer-W(CO)3(dppb)(η2-C60)via displacement reaction of fac-W(CO)3(MeCN)(dppb). Polyhedron 16:2141–2143. https://doi.org/10.1016/S0277-5387(96)00603-1

    Article  CAS  Google Scholar 

  30. Song L-C, Zhu Y-H, Hu Q-M (1998) The chemical reactivity of fullerene C60 towards fac-Mo(CO)3 (MeCN)(dppe) and Mo(CO)4(dppe). Synthesis, characterization and reactions of the novel fullerene molybdenum derivative fac-Mo(CO)3(dppe)(η2-C60). Polyhedron 17:469–473. https://doi.org/10.1016/S0277-5387(97)00370-7

    Article  CAS  Google Scholar 

  31. Bao L, Liu B, Li X et al (2016) W(CO)3(Ph2PC2H4PPh2)(η2-Sc3N@Ih-C80/Sc3N@D5h-C80): regioselective synthesis and crystallographic characterization of air-stable mononuclear complexes of endohedral fullerenes. Dalton Trans 45:11606–11610. https://doi.org/10.1039/C6DT00790B

    Article  CAS  PubMed  Google Scholar 

  32. Bao L, Yu P, Li Y et al (2019) Highly regioselective complexation of tungsten with Eu@C82/Eu@C84: interplay between endohedral and exohedral metallic units induced by electron transfer. Chem Sci 10:4945–4950. https://doi.org/10.1039/C9SC01479A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cui P, Li L, Tang K, Jin X (2001) The crystal structure of the molybdenum complex of [70]fullerene Mo(ẽ2-C70)(CO)2(Phen)(Dbm) · 2C3H8O · 2.5H2O (Phen = 1,10-Phenanthroline, Dbm = Dibutyl maleate). J Chem Res 2001:240–242. https://doi.org/10.3184/030823401103169621

    Article  Google Scholar 

  34. Tang K, Zheng S, Jin X et al (1997) Syntheses and structural characterizations of novel tungsten and molybdenum complexes of fullerene [M(η2-C60)(CO)2(phen)(dbm)]· 2C6H6·C5H12 (M = W or Mo, phen = 1,10-phenanthroline, dbm = dibutyl maleate). J Chem Soc Dalton Trans 3585–3587. https://doi.org/10.1039/A704145D

  35. Bengough MN, Thompson DM, Baird MC, Enright GD (1999) Synthesis and structures of the novel manganese(−I) fullerene-[60] complexes M[Mn(CO)42-C60)] (M = Na, PPN). Organometallics 18:2950–2952. https://doi.org/10.1021/om990361r

    Article  CAS  Google Scholar 

  36. Konarev DV, Khasanov SS, Yudanova EI, Lyubovskaya RN (2011) The η2 complex of nickel Bis(diphenylphosphanyl)propane with fullerene: Ni(dppp)(η2-C60)·(solvent) obtained by reduction. Eur J Inorg Chem 2011:816–820. https://doi.org/10.1002/ejic.201001059

    Article  CAS  Google Scholar 

  37. Konarev DV, Khasanov SS, Troyanov SI et al (2013) Mononuclear coordination complexes of fullerene C60 with zerovalent cobalt having S = 1/2 spin state: Co(η2-C60)(L)(C6H5CN)·(o-C6H4Cl2) (L = 1,2-bis(diphenylphosphino)ethane and 1,1′-bis(diphenylphosphino)ferrocene). Inorg Chem 52:13934–13940. https://doi.org/10.1021/ic401577m

    Article  CAS  PubMed  Google Scholar 

  38. Hawkins JM, Meyer A, Lewis TA et al (1991) Crystal structure of osmylated C60: confirmation of the soccer ball framework. Science 252:312–313. https://doi.org/10.1126/science.252.5003.312

    Article  CAS  PubMed  Google Scholar 

  39. Westmeyer MD, Rauchfuss TB, Verma AK (1996) Iron sulfido derivatives of the fullerenes C60 and C70. Inorg Chem 35:7140–7147. https://doi.org/10.1021/ic960728+

    Article  CAS  PubMed  Google Scholar 

  40. Usatov AV, Martynova EV, Neretin IS et al (2003) The first mononuclear η2-C60 complex of osmium: synthesis and X-ray crystal structure of [(η2-C60)Os(CO)(t-BuNC)(PPh3)2]. Eur J Inorg Chem 2003:2041–2044. https://doi.org/10.1002/ejic.200300078

    Article  CAS  Google Scholar 

  41. Ballenweg S, Gleiter R, Krätschmer W (1993) Hydrogenation of buckminsterfullerene C60 via Hydrozirconation: a new way to organofullerenes. Tetrahedron Lett 34:3737–3740. https://doi.org/10.1016/S0040-4039(00)79214-8

    Article  CAS  Google Scholar 

  42. Sawamura M, Iikura H, Nakamura E (1996) The first pentahaptofullerene metal complexes. J Am Chem Soc 118:12850–12851. https://doi.org/10.1021/ja962681x

    Article  CAS  Google Scholar 

  43. Rasinkangas M, Pakkanen TT, Pakkanen TA et al (1993) Multimetallic binding to fullerenes: C60{Ir2Cl2(1,5-COD)2}2. A novel coordination mode to fullerenes. J Am Chem Soc 115:4901–4901. https://doi.org/10.1021/ja00064a065

    Article  CAS  Google Scholar 

  44. Mavunkal IJ, Chi Y, Peng S-M, Lee G-H (1995) Preparation and structure of Cp*2Ru2(μ-Cl)(μ-X)(C60), X = H and Cl. Novel dinuclear fullerene complexes with and without direct ruthenium-ruthenium bonding. Organometallics 14:4454–4456. https://doi.org/10.1021/om00010a005

    Article  CAS  Google Scholar 

  45. Park JT, Cho J-J, Song H (1995) Triosmium cluster derivatives of [60]fullerene. J Chem Soc Chem Commun:15–16. https://doi.org/10.1039/C39950000015

  46. Lee K, Song H, Park JT (2003) [60]fullerene−metal cluster complexes: novel bonding modes and electronic communication. Acc Chem Res 36:78–86. https://doi.org/10.1021/ar020149a

    Article  CAS  PubMed  Google Scholar 

  47. Park JT, Song H, Cho J-J et al (1998) Synthesis and characterization of η2-C60 and μ3222-C60 triosmium cluster complexes. Organometallics 17:227–236. https://doi.org/10.1021/om970689p

    Article  CAS  Google Scholar 

  48. Hsu H-F, Shapley JR (1996) Ru3(CO)93222-C60): a cluster face-capping, arene-like complex of C60. J Am Chem Soc 118:9192–9193. https://doi.org/10.1021/ja962077m

    Article  CAS  Google Scholar 

  49. Song H, Lee Y, Choi Z-H et al (2001) Synthesis and characterization of μ3222-C60 trirhenium hydrido cluster complexes. Organometallics 20:3139–3144. https://doi.org/10.1021/om0101341

    Article  CAS  Google Scholar 

  50. Hsu H-F, Shapley JR (2000) Triruthenium cluster complexes of C60 and C70: carbonyl site exchange probed via triphenylphosphine ligand derivatives. J Organomet Chem 599:97–105. https://doi.org/10.1016/S0022-328X(00)00016-4

    Article  CAS  Google Scholar 

  51. Song H, Lee K, Park JT, Choi M-G (1998) Synthesis, structure, and electrochemical studies of μ3222-C60 triosmium complexes. Organometallics 17:4477–4483. https://doi.org/10.1021/om980361b

    Article  CAS  Google Scholar 

  52. Song H, Lee K, Park JT et al (2000) Fluxional processes and structural characterization of μ3222-C60 triosmium cluster complexes, Os3(CO)9−n(PMe3)n3222-C60) (n=1, 2, 3). J Organomet Chem 599:49–56. https://doi.org/10.1016/S0022-328X(99)00715-9

    Article  CAS  Google Scholar 

  53. Song H, Lee CH, Lee K, Park JT (2002) Ligand-induced conversion of π to σ C60−metal cluster complexes: full characterization of the μ3121-C60 bonding mode. Organometallics 21:2514–2520. https://doi.org/10.1021/om020109a

    Article  CAS  Google Scholar 

  54. Song H, Lee K, Choi M-G, Park JT (2002) [60]Fullerene as a versatile four-electron donor ligand. Organometallics 21:1756–1758. https://doi.org/10.1021/om020038f

    Article  CAS  Google Scholar 

  55. Chen C-H, Yeh W-Y, Liu Y-H, Lee G-H (2012) [(μ-H)3Re3(CO)9222-Sc2C2@C3v(8)-C82)]: face-capping cluster complex of an endohedral fullerene. Angew Chem Int Ed 51:13046–13049. https://doi.org/10.1002/anie.201207261

    Article  CAS  Google Scholar 

  56. Zhan S-Z, Zhang G-H, Li J-H et al (2020) Exohedral cuprofullerene: sequentially expanding metal olefin up to a C60@Cu24 rhombicuboctahedron. J Am Chem Soc 142:5943–5947. https://doi.org/10.1021/jacs.0c00090

    Article  CAS  PubMed  Google Scholar 

  57. Lee K, Hsu H-F, Shapley JR (1997) Coordination of C60 to penta- and hexaruthenium cluster frames. Organometallics 16:3876–3877. https://doi.org/10.1021/om970265v

    Article  CAS  Google Scholar 

  58. Lee K, Shapley JR (1998) Face-coordinated C60 complexes with carbido pentaruthenium cluster cores including a bimetallic platinum−pentaruthenium complex. Organometallics 17:3020–3026. https://doi.org/10.1021/om971091k

    Article  CAS  Google Scholar 

  59. Lee K, Song H, Kim B et al (2002) The first fullerene−metal sandwich complex: an unusually strong electronic communication between two C60 cages. J Am Chem Soc 124:2872–2873. https://doi.org/10.1021/ja017496k

    Article  CAS  PubMed  Google Scholar 

  60. Lee K, Lee CH, Song H et al (2000) Interconversion between μ-η22-C60 and μ3222-C60 on a carbido pentaosmium cluster framework. Angew Chem Int Ed 112:1871–1874. https://doi.org/10.1002/(SICI)1521-3757(20000515)112:10<1871::AID-ANGE1871>3.0.CO;2-9

    Article  Google Scholar 

  61. Zimmerman PA, Hercules DM (1993) Formation and detection of fullerene metal complexes using time-of-flight secondary ion mass spectrometry. Appl Spectrosc AS 47:1545–1547

    Article  CAS  Google Scholar 

  62. Jin X, Xie X, Tang K (2002) Syntheses and X-ray crystal structures of dumbbell-shaped bis-fullerene tungsten and molybdenum complexes. Chem Commun 750–751. https://doi.org/10.1039/B200793B

  63. Konarev DV, Kuźmin AV, Simonov SV et al (2011) Structure and properties of ionic fullerene complex Co+(dppe)2·(C60˙)·(C6H4Cl2)2: distortion of the ordered fullerene cage of C60˙ radical anions. Dalton Trans 40:4453–4458. https://doi.org/10.1039/C1DT10039D

    Article  CAS  PubMed  Google Scholar 

  64. Konarev DV, Troyanov SI, Nakano Y et al (2013) Magnetic coupling in the fullerene dimer {Co(Ph3P)(C6H5CN)}2222-C60)2 with two zerovalent cobalt atoms as bridges. Organometallics 32:4038–4041. https://doi.org/10.1021/om400392c

    Article  CAS  Google Scholar 

  65. Konarev DV, Troyanov SI, Ustimenko KA et al (2015) Formation of {Co(dppe)}222222-[(C60)2]} dimers bonded by single C–C bonds and bridging η2-coordinated cobalt atoms. Inorg Chem 54:4597–4599. https://doi.org/10.1021/acs.inorgchem.5b00637

    Article  CAS  PubMed  Google Scholar 

  66. Lee G, Cho Y-J, Park BK et al (2003) Two metal centers bridging two C60 cages as a wide passage for efficient interfullerene electronic interaction. J Am Chem Soc 125:13920–13921. https://doi.org/10.1021/ja037106p

    Article  CAS  PubMed  Google Scholar 

  67. Nagashima H, Nakaoka A, Saito Y et al (1992) C60Pdn: the first organometallic polymer of buckminsterfullerene. J Chem Soc Chem Commun:377–379. https://doi.org/10.1039/C39920000377

  68. van Wijnkoop MF, Meidine MG, Avent A et al (1997) Platinum(0)–[60]fullerene complexes with chelating diphosphine ligands. Syntheses and characterisation of [Pt(η2-C60)(L–L)] [L–L = Ph2P(CH2)nPPh2, n = 2 or 3]. J Chem Soc Dalton Trans:675–678. https://doi.org/10.1039/A605357B

  69. Nagashima H, Kato Y, Yamaguchi H et al (1994) Synthesis and reactions of organoplatinum compounds of C60, C60Ptn. Chem Lett 23:1207–1210. https://doi.org/10.1246/cl.1994.1207

    Article  Google Scholar 

  70. Nagashima H, Nakazawa M, Furukawa T, Itoh K (1996) Organopalladium and platinum complexes of C60 bearing isonitrile ligands. Chem Lett 25:405–406. https://doi.org/10.1246/cl.1996.405

    Article  Google Scholar 

  71. Balch AL, Costa DA, Winkler K (1998) Formation of redox-active, two-component films by electrochemical reduction of C60 and transition metal complexes. J Am Chem Soc 120:9614–9620. https://doi.org/10.1021/ja9805526

    Article  CAS  Google Scholar 

  72. Konarev DV, Khasanov SS, Nakano Y et al (2014) Linear coordination fullerene C60 polymer [{Ni(Me3P)2}(μ-η22-C60)] bridged by zerovalent nickel atoms. Inorg Chem 53:11960–11965. https://doi.org/10.1021/ic501551y

    Article  CAS  PubMed  Google Scholar 

  73. Zhan S-Z, Li J-H, Li Y et al (2021) Ultra-stable 2D cuprofullerene imidazolate polymer as a high-performance visible-light photodetector. Sci China Mater 64:1563–1569. https://doi.org/10.1007/s40843-020-1589-7

    Article  CAS  Google Scholar 

  74. Liu X, Wan WC, Owens SM, Broderick WE (1994) Superconducting alkali metal fullerides: development of a versatile solution-phase route from soluble M3C60 precursors. J Am Chem Soc 116:5489–5490. https://doi.org/10.1021/ja00091a071

    Article  CAS  Google Scholar 

  75. Konarev DV, Lyubovskaya RN (2012) Molecular design, study of the structures and properties of ionic fullerene compounds. Russ Chem Rev 81:336. https://doi.org/10.1070/RC2012v081n04ABEH004273

    Article  CAS  Google Scholar 

  76. Wan WC, Liu X, Sweeney GM, Broderick WE (1995) Structural evidence for the expected Jahn-Teller distortion in monoanionic C60: synthesis and X-ray crystal structure of decamethylnickelocenium buckminsterfulleride. J Am Chem Soc 117:9580–9581. https://doi.org/10.1021/ja00142a033

    Article  CAS  Google Scholar 

  77. Konarev DV, Khasanov SS, Saito G et al (2003) Formation of single-bonded (C60)2 and (C70)2 dimers in crystalline ionic complexes of fullerenes. J Am Chem Soc 125:10074–10083. https://doi.org/10.1021/ja035546a

    Article  CAS  PubMed  Google Scholar 

  78. Konarev DV, Kuzmin AV, Andronov MG et al (2018) Distortion and electronic structure of ordered C60•− radical anions in the salt with {CoI(dppe)2CO}+ cations (dppe: 1,2-bis(diphenylphosphino)ethane). Inorg Chim Acta 483:504–509. https://doi.org/10.1016/j.ica.2018.08.046

    Article  CAS  Google Scholar 

  79. Konarev DV, Kuźmin AV, Simonov SV et al (2011) Structure and properties of ionic fullerene complex Co+(dppe)2·(C60˙)·(C6H4Cl2)2: distortion of the ordered fullerene cage of C60•− radical anions. Dalton Trans 40:4453–4458. https://doi.org/10.1039/C1DT10039D

    Article  CAS  PubMed  Google Scholar 

  80. Hong J, Shores MP, Elliott CM (2010) Establishment of structure-conductivity relationship for Tris(2,2′-bipyridine) ruthenium ionic C60 salts. Inorg Chem 49:11378–11385. https://doi.org/10.1021/ic1013126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwang Pan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pan, C. (2022). Complexation with Transition Metals. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3242-5_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3242-5_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3242-5

  • Online ISBN: 978-981-13-3242-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics