Skip to main content

Precision Analysis of the Underwater Laser Scanning System to Measure Benthic Organisms

  • Conference paper
  • First Online:
Advanced Manufacturing and Automation VIII (IWAMA 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 484))

Included in the following conference series:

Abstract

In order to realize high-speed and large-scale three-dimensional measurement of benthic organisms, the underwater laser scanning system is designed. First, a mathematical model of the underwater imaging is established, which can express the light propagation, light refraction, and the transformation between the pixel and the light. Then, the precision analysis of the underwater laser scanning system is studied. The effect of the camera’s lens, focal length and baseline distance on the precision of 3D reconstruction is analyzed. Finally, the system calibration is carried out and the precision of the underwater laser scanning system is verified with the standard targets whose distance are known before. The experiment of the precision evaluation with the ball bar shows that the RMS of the system can achieve 0.87 mm, when the depth is between 2 m and 3 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pan, Y., Liu, Y., Ye, S., Fu, X.: Design of underwater camera controlling system based on MAX16802B. Comput. Meas. Control 32(2), 116–118 (2012)

    Google Scholar 

  2. Wei, Z.: Study on Underwater 3D Structured Light Measurement and Its Application in Vision Guidance and Positioning. Ocean University of China (2015)

    Google Scholar 

  3. Yu, S.C.: Development of real-time acoustic image recognition system using by autonomous marine vehicle. Ocean Eng. 35(1), 90–105 (2008)

    Article  Google Scholar 

  4. Li, C., Zhang, X., Tu, D.: Deflectometry measurement method of single-camera monitoring. Acta Optica Sinica 37(10), 1012007 (2017)

    Article  Google Scholar 

  5. Zhuang, L., Zhang, X., Zhou, W.: A coarse-to-fine matching method in the line laser scanning system. In: International Workshop of Advanced Manufacturing and Automation, pp. 19–33. Springer, Singapore (2017)

    Google Scholar 

  6. Abdo, D.A., Seager, J.W., Harvey, E.S., McDonald, J.I., Kendrick, G.A., Shortis, M.R.: Efficiently measuring complex sessile epibenthic organisms using a novel photogrammetric technique. J. Exp. Mar. Biol. Ecol. 339(1), 120–133 (2006)

    Article  Google Scholar 

  7. Xie, Z., Li, X., Xin, S., et al.: Underwater line structured-light self-scan three-dimension measuring technology. Chin. Laser 37(8), 2010–2014 (2010)

    Article  Google Scholar 

  8. Zhang, X., Fei, K., Tu, D.: Modeling and analysis of synchronized scanning triangulation. Optoelectron. Laser 26(2), 295–302 (2015)

    Google Scholar 

  9. Datta, A., Kim, J.S., et al.: Accurate camera calibration using iterative refinement of control points. In: Computer Vision Workshops (ICCV Workshops), pp. 285–299. IEEE (2009)

    Google Scholar 

  10. Agrawal, A., Ramalingam, S., Taguchi, Y.: A theory of multi-layer flat refractive geometry. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 3346–3353 (2012)

    Google Scholar 

Download references

Acknowledgment

This research was partially supported by the National Nature Science Foundation of China (Grant No. 51575332 and No. 61673252) and the key research project of Ministry of science and technology (Grant No. 2016YFC0302401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingping He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, P., Zhang, X., Li, J., Xie, L., Tu, D. (2019). Precision Analysis of the Underwater Laser Scanning System to Measure Benthic Organisms. In: Wang, K., Wang, Y., Strandhagen, J., Yu, T. (eds) Advanced Manufacturing and Automation VIII. IWAMA 2018. Lecture Notes in Electrical Engineering, vol 484. Springer, Singapore. https://doi.org/10.1007/978-981-13-2375-1_41

Download citation

Publish with us

Policies and ethics