Skip to main content

Naphthol-Based Macrocycles

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly

Abstract

Macrocyclic receptors are the primary workhorses in supramolecular chemistry. In particular, macrocyclic arenes are versatile receptors because their structures can be tailor-made and readily functionalized. In this chapter, we discuss the recent advances on naphthol-based macrocyclic receptors, namely, calix[n]naphthalenes, zorb[n]arenes, oxatub[n]arenes, naphthalenophanes, and naphthotubes. The emphasis will be on their design and synthesis, structural features, and host-guest properties. Given the success of calixarenes and their analogues, we believe that naphthol-based macrocycles will find wide applications provided we endow them with unprecedented molecular recognition ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Gale PA, Steed JW (2012) Supramolecular chemistry: from molecules to nanomaterials, Molecular recognition, vol 3. Wiley, Chichester

    Book  Google Scholar 

  2. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  3. Chen Y, Liu Y (2010) Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev 39:495–505

    Article  CAS  Google Scholar 

  4. Böhmer V (1995) Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed Eng 34:713–745

    Article  Google Scholar 

  5. Ikeda A, Shinkai S (1997) Novel cavity design using calix [n] arene skeletons: toward molecular recognition and metal binding. Chem Rev 97:1713–1734

    Article  CAS  Google Scholar 

  6. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The cucurbit [n] uril family. Angew Chem Int Ed 44:4844–4870

    Article  CAS  Google Scholar 

  7. Wu J, Yang Y-W (2018) New opportunities in synthetic macrocyclic arenes. Chem Commun. https://doi.org/10.1039/C8CC09374A

    Article  CAS  Google Scholar 

  8. Hardie MJ (2010) Recent advances in the chemistry of cyclotriveratrylene. Chem Soc Rev 39:516–527

    Article  CAS  Google Scholar 

  9. Guo D-S, Liu Y (2012) Calixarene-based supramolecular polymerization in solution. Chem Soc Rev 41:5907–5921

    Article  CAS  Google Scholar 

  10. Ogoshi T, Kanai S, Fujinami S, Yamagishi T-A, Nakamoto Y (2008) Para-bridged symmetrical pillar [5] arenes: their Lewis acid catalyzed synthesis and host–guest property. J Am Chem Soc 130:5022–5023

    Article  CAS  Google Scholar 

  11. Cragg PJ, Sharma K (2012) Pillar [5] arenes: fascinating cyclophanes with a bright future. Chem Soc Rev 41:597–607

    Article  CAS  Google Scholar 

  12. Yang L-P, Liu W-E, Jiang W (2016) Naphthol-based macrocyclic receptors. Tetrahedron Lett 57:3978–3985

    Article  CAS  Google Scholar 

  13. Georghiou PE, Li Z, Ashram M, Chowdhury S, Mizyed S, Tran AH, Al-Saraierh H, Miller DO (2005) Calixnaphthalenes: deep, electron-rich naphthalene ring-containing calixarenes. The first decade. Synlett 2005:0879–0891

    Article  Google Scholar 

  14. Georghiou PE, Li Z (1993) Calix [4] naphthalenes: cyclic tetramers of 1-naphthol and formaldehyde. Tetrahedron Lett 34:2887–2890

    Article  CAS  Google Scholar 

  15. Georghiou PE, Ashram M, Li Z, Chaulk SG (1995) Syntheses of calix [4] naphthalenes derived from 1-naphthol. J Org Chem 60:7284–7289

    Article  CAS  Google Scholar 

  16. Andreetti GD, Boehmer V, Jordon JG, Tabatabai M, Ugozzoli F, Vogt W, Wolff A (1993) Dissymmetric calix [4] arenes with C4-and C2-symmetry. Synthesis, x-ray structures, conformational fixation, and proton NMR spectroscopic studies. J Org Chem 58:4023–4032

    Article  CAS  Google Scholar 

  17. Georghiou PE, Ashram M, Clase HJ, Bridson JN (1998) Spirodienone and bis (spirodienone) derivatives of calix [4] naphthalenes. J Org Chem 63:1819–1826

    Article  CAS  Google Scholar 

  18. Chowdhury S, Georghiou PE (2002) Synthesis and properties of a new member of the calixnaphthalene family: a C 2-symmetrical endo-calix[4]naphthalene. J Org Chem 67:6808–6811

    Article  CAS  Google Scholar 

  19. Shorthill BJ, Granucci RG, Powell DR, Glass TE (2002) Synthesis of 3, 5-and 3, 6-linked calix [n] naphthalenes. J Org Chem 67:904–909

    Article  CAS  Google Scholar 

  20. Shorthill BJ, Glass TE (2001) Naphthalene-based calixarenes: unusual regiochemistry of a friedel−crafts alkylation. Org Lett 3:577–579

    Article  CAS  Google Scholar 

  21. Georghiou PE, Tran AH, Stroud SS, Thompson DW (2006) Supramolecular complexation studies of [60] fullerene with calix [4] naphthalenes–a reinvestigation. Tetrahedron 62:2036–2044

    Article  CAS  Google Scholar 

  22. Ashram M, Mizyed S, Georghiou PE (2001) Synthesis of hexahomotrioxacalix [3] naphthalenes and a study of their alkali-metal cation binding properties. J Org Chem 66:1473–1479

    Article  CAS  Google Scholar 

  23. Mizyed S, Ashram M, Miller DO, Georghiou PE (2001) Supramolecular complexation of [60] fullerene with hexahomotrioxacalix [3] naphthalenes: a new class of naphthalene-based calixarenes. J Chem Soc Perkin Trans 2:1916–1919

    Google Scholar 

  24. Poh B-L, Lim CS, Khoo KS (1989) A water-soluble cyclic tetramer from reacting chromotropic acid with formaldehyde. Tetrahedron Lett 30:1005–1008

    Article  CAS  Google Scholar 

  25. Poh B-L, Chin LY, Lee CW (1995) A cyclic tetramer from reacting 4-amino-5-hydroxynaphthalene-2, 7-disulfonic acid with formaldehyde and its complexation with polyaromatic hydrocarbons in water. Tetrahedron Lett 36:3877–3880

    Article  CAS  Google Scholar 

  26. Poh B-L, Tan CM (1993) Contribution of guest-host CH-π interaction to the stability of complexes formed from cyclotetrachromotropylene as host and alcohols and sugars as guests in water. Tetrahedron 49:9581–9592

    Article  CAS  Google Scholar 

  27. Poh B-L, Chow YM (1992) Transport method for determining the association constants of complexes formed between aromatic hydrocarbons andα-andβ-cyclodextrin in water. J Incl Phenom Mol Recognit Chem 14:85–90

    Article  CAS  Google Scholar 

  28. Poh B-L, Tan CM (1995) Crown ethers as guests of cyclotetrachromotropylene in water. Tetrahedron 51:953–958

    Article  CAS  Google Scholar 

  29. Georghiou PE, Valluru G, Schneider C, Liang S, Woolridge K, Mulla K, Adronov A, Zhao Y (2014) Dispersion of single-walled carbon nanotubes into aqueous solutions using Poh's cyclotetrachromo-tropylene (CTCT). RSC Adv 4:31614–31617

    Article  CAS  Google Scholar 

  30. Poh B-L, Tan C-M (2000) Complexation of nucleotides in water with cyclotetrachromotropylene. J Incl Phenom Macro 38:69–74

    Article  CAS  Google Scholar 

  31. Tran AH, Miller DO, Georghiou PE (2005) Synthesis and complexation properties of “zorbarene”: a new naphthalene ring-based molecular receptor. J Org Chem 70:1115–1121

    Article  CAS  Google Scholar 

  32. Tran H-A, Georghiou PE (2007) Synthesis and complexation study of (1, 4-linked)-homothiaisocalixnaphthalenes. New J Chem 31:921–926

    Article  CAS  Google Scholar 

  33. Tran H-A, Collins J, Georghiou PE (2008) Synthesis of “calixarene-like” N, N-ditosyldiaza [3.3](1, 4) naphthalenophanes. New J Chem 32:1175–1182

    Article  CAS  Google Scholar 

  34. Jia F, He Z, Yang LP, Pan ZS, Yi M, Jiang RW, Jiang W (2015) Oxatub[4]arene: a smart macrocyclic receptor with multiple interconvertible cavities. Chem Sci 6:6731–6738

    Article  CAS  Google Scholar 

  35. Jia F, Wang HY, Li DH, Yang LP, Jiang W (2016) Oxatub[4]arene: a molecular “transformer” capable of hosting a wide range of organic cations. Chem Commun 52:5666–5669

    Article  CAS  Google Scholar 

  36. Jarvi ET, Whitlock HW Jr (1980) Synthesis and characterization of 1, 8, 15, 22-tetraoxa [8.8] paracyclophane-3, 5, 17, 19-tetrayne-10, 25-dicarboxylic acid, a novel water-soluble and donut-shaped molecule. J Am Chem Soc 102:657–662

    Article  CAS  Google Scholar 

  37. Whitlock BJ, Jarvi ET, Whitlock HW (1981) Preparation and characterization of 1, 8, 19, 26-tetraoxa [8.8](2, 6) naphthalenophane-3, 5, 21, 23-tetrayne and related donut-shaped cyclophanes. J Org Chem 46:1832–1835

    Article  CAS  Google Scholar 

  38. Jarvi ET, Whitlock HW (1982) 1, 8, 17, 24-tetraoxa [8.8](2, 6) naphthalenophane-3, 5, 19, 21-tetrayne-10, 30-dicarboxylic acid derivatives, novel complexors of aromatic guests. J Am Chem Soc 104:7196–7204

    Article  CAS  Google Scholar 

  39. Sheridan RE, Whitlock HW (1986) Concave functionality: design of a phenol sticky host. J Am Chem Soc 108:7120–7121

    Article  CAS  Google Scholar 

  40. Sheridan RE, Whitlock HW (1988) Concave functionality: some exceptionally large binding constants of phenol sticky hosts. J Am Chem Soc 110:4071–4073

    Article  CAS  Google Scholar 

  41. Whitlock BJ, Whitlock HW (1990) Concave functionality: design criteria for nonaqueous binding sites. J Am Chem Soc 112:3910–3915

    Article  CAS  Google Scholar 

  42. Whitlock BJ, Whitlock HW Jr (1988) Intracavity acetyl transfer. Tetrahedron Lett 29:6047–6050

    Article  CAS  Google Scholar 

  43. Kennan AJ, Whitlock HW (1996) Host-catalyzed isoxazole ring opening: a rationally designed artificial enzyme. J Am Chem Soc 118:3027–3028

    Article  CAS  Google Scholar 

  44. Whitesides VJDDGTH (1982) Dibenzoxanthene derivatives and related products from P-naphthol and aldehydes or acetals. J Org Chem 47:820–823

    Article  Google Scholar 

  45. He Z, Yang X, Jiang W (2015) Synthesis, solid-state structures, and molecular recognition of chiral molecular tweezer and related structures based on a rigid bis-naphthalene cleft. Org Lett 17:3880–3883

    Article  CAS  Google Scholar 

  46. He Z, Jiang W, Schalley CA (2015) Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem Soc Rev 44:779–789

    Article  CAS  Google Scholar 

  47. Yao H, Yang LP, Pang XY, Li JR, Jiang W (2018) Self-assembly of two-dimensional structures in water from rigid and curved amphiphiles with a low molecular weight. Chem Commun 54:10847–10850

    Article  CAS  Google Scholar 

  48. Yao H, Yang L-P, He Z-F, Li J-R, Jiang W (2017) A phase-selective, bis-urea organogelator with a curved bis-naphthalene core. Chin Chem Lett 28:782–786

    Article  CAS  Google Scholar 

  49. Yao H, Suan J-N, Ke H, Yang L-P, Li J-R, Jiang W (2017) Synthesis of bis-naphthalene and their derivatives and their complexation with organic cation. Chinese J Org Chem 37:603–607

    Article  CAS  Google Scholar 

  50. He Z, Ye G, Jiang W (2015) Imine macrocycle with a deep cavity: guest-selected formation of syn/anti configuration and guest-controlled reconfiguration. Chemistry 21:3005–3012

    Article  CAS  Google Scholar 

  51. Purse BW, Rebek J (2005) Functional cavitands: chemical reactivity in structured environments. P Natl Acad Sci USA 102:10777–10782

    Article  CAS  Google Scholar 

  52. Vögtle CSF (1992) Molecules with Large Cavities in Supramolecular Chemistry. Angew Chem Int Ed Engl 31:528–549

    Article  Google Scholar 

  53. Adriaenssens L, Ballester P (2013) Hydrogen bonded supramolecular capsules with functionalized interiors: the controlled orientation of included guests. Chem Soc Rev 42:3261–3277

    Article  CAS  Google Scholar 

  54. Huang G, He Z, Cai CX, Pan F, Yang D, Rissanen K, Jiang W (2015) Bis-urea macrocycles with a deep cavity. Chem Commun 51:15490–15493

    Article  CAS  Google Scholar 

  55. Huang G, Valkonen A, Rissanen K, Jiang W (2016) Endo-functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media. Chem Commun 52:9078–9081

    Article  CAS  Google Scholar 

  56. Shewale MN, Lande DN, Gejji SP (2017) Density functional investigations on the selective binding of an endo-functionalized bis-urea macrocycle. J Phys Chem A 121:288–297

    Article  CAS  Google Scholar 

  57. Lande DN, Gejji SP (2018) Supramolecular binding of bis-naphthalene cleft based molecular tubes. Chemistry Select 3:10537–10542

    CAS  Google Scholar 

  58. Shorthill BJ, Avetta CT, Glass TE (2004) Shape-selective sensing of lipids in aqueous solution by a designed fluorescent molecular tube. J Am Chem Soc 126:12732–12733

    Article  CAS  Google Scholar 

  59. Avetta CT, Shorthill BJ, Ren C, Glass TE (2012) Molecular tubes for lipid sensing: tube conformations control analyte selectivity and fluorescent response. J Org Chem 77:851–857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank NSFC, SZSTI, and SUSTech for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yao, H., Jiang, W. (2019). Naphthol-Based Macrocycles. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics