Skip to main content

Introduction to Particles in Indoor Air

  • Living reference work entry
  • First Online:
Handbook of Indoor Air Quality

Abstract

This chapter provides an overview of the section on Indoor Air Particles. This section focuses on the physical processes that affect particle concentrations and some major sources. Penetration of particles from the ambient aerosol into the indoor environment is an important source of indoor particles. The particles depending on their size can then deposit and can be resuspended. Semi-volatile species partition into particles and the gaseous phase depending on factors such as vapor pressure at typical indoor temperatures and solubility into organic phases. The dynamics of these processes are presented in separate chapters that are outlined here. This chapter also introduces a number of major primary indoor sources such as cooking emissions and the use of personal care products. Different cooking styles can produce major differences in emission rates. Personal care products can directly emit particles and semi-volatile compounds, some of which can react with infiltrated ozone in chemistry described in the indoor air chemistry section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Amouei Torkmahalleh M, Gorjinezhad S, Unluevcek HS, Hopke PK (2017) Review of factors impacting emission/concentration of cooking generated particulate matter. Sci Total Environ 586:1046–1056

    Article  CAS  Google Scholar 

  • Bell ML, Davis DL, Fletcher T (2004) A retrospective assessment of mortality from the London Smog episode of 1952: the role of influenza and pollution. Environ Health Perspect 112:6–8

    Article  Google Scholar 

  • Bhatnagar A, Whitsel LP, Ribisl KM, Bullen C, Chaloupka F, Piano MR, Robertson RM, McAuley T, Goff D, Benowitz N (2014) Electronic cigarettes: a policy statement from the American Heart Association. Circulation 130:1418–1436

    Article  Google Scholar 

  • Brauer M, Hirtle RD, Hall AC, Yip TR (1999) Monitoring personal fine particle exposure with a particle counter. J Expo Anal Environ Epidemiol 9:228–236

    Article  CAS  Google Scholar 

  • Brindlecombe P (1976) Attitudes and responses towards air pollution in medieval England. J Air Pollution Control Assoc 26(10):941–945

    Google Scholar 

  • Cai H, Wang C (2017) Graphical review: the redox dark side of e-cigarettes; exposure to oxidants and public health concerns. Redox Biol 13:402–406

    Article  CAS  Google Scholar 

  • Chang YC, Lee HW, Tseng HH (2007) The formation of incense smoke. J Aerosol Sci 38:39–51

    Article  CAS  Google Scholar 

  • Chen X, Hopke PK, Carter WPL (2011) Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation. Environ Sci Technol 45:276–282

    Article  CAS  Google Scholar 

  • Clayton CA, Perritt RL, Pellizzari ED, Thomas KW, Whitmore RW, Ozkaynak H, Spengler JD, Wallace LA (1993) Particle Total Exposure Assessment Methodology (PTEAM) study: distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in a Southern California community. Expo Anal Environ Epidemiol 3:227–250

    CAS  Google Scholar 

  • Corsi RL, Siegel JA, Chiang C (2008) Particle resuspension during the use of vacuum cleaners on residential carpet. J Occup Environ Hyg 5:232–238

    Article  Google Scholar 

  • Croft DP, Zhang W, Lin S, Thurston SW, Hopke PK, van Wijngaarden E, Squizzato S, Masiol M, Utell MJ, Rich DQ (2020) The associations between source specific particulate matter and of respiratory infections in New York state adults. Environ Sci Technol 54:975–984

    Article  CAS  Google Scholar 

  • Donahue NM, Robinson AL, Stanier CO, Pandis SN (2006) Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ Sci Technol 40(8):2635–2643

    Google Scholar 

  • Ferro AR, Hildemann LM, McBride SJ, Ott W, Switzer P (1999) Human exposure to particles due to indoor cleaning activities. In: Brebbia CA et al (eds) Air pollution VII. WIT Press, Southampton, pp. 487–496

    Google Scholar 

  • Glasius M, Goldstein AH (2016) Recent discoveries and future challenges in atmospheric organic chemistry. Environ Sci Technol 50(6):2754–2764. https://doi.org/10.1021/acs.est.5b05105

  • Goel A, Wathore R, Chakraborty T, Agrawal M (2017) Characteristics of exposure to particles due to incense burning inside temples in Kanpur. India Aerosol Air Qual Res 17:608–615

    Article  CAS  Google Scholar 

  • Hodas N, Turpin BJ (2014) Shifts in the gas-particle partitioning of ambient organics with transport into the indoor environment. Aerosol Sci Technol 48(3):271–281

    Google Scholar 

  • Hopke PK (2015) Reactive ambient particles. Chapter 1. In: Nadadur SS, Hollingsworth JW (eds) Air pollution and health effects, molecular and integrative toxicology. Springer-Verlag, London, pp 1–24

    Google Scholar 

  • Hopke PK, Croft D, Zhang W, Shao L, Masiol M, Squizzato S, Thurston SW, van Wijngaarden E, Utell MJ, Rich DQ (2020) Changes in the acute response of respiratory disease to PM2.5 in New York state from 2005 to 2016. Sci Total Environ 677:328–339

    Google Scholar 

  • Jetter JJ, Guo Z, McBrian JA, Flynn MR (2002) Characterization of emissions from burning incense. Sci Total Environ 295:51–67

    Article  CAS  Google Scholar 

  • Ji JH (2020) Size distributions of suspended fine particles during cleaning in an office. Aerosol Air Qual Res 20:53–60

    Article  CAS  Google Scholar 

  • Ji X, Le Bihan O, Ramalho O, Mandin C, D’Anna B, Martinon L, Nicolas M, Bard D, Pairon JC (2010) Characterization of particles emitted by incense burning in an experimental house. Indoor Air 20:147–158

    Article  CAS  Google Scholar 

  • Johnson AM, Waring MS, DeCarlo PF (2016) Real-time transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry. Indoor Air 27(1):230–240

    Google Scholar 

  • Kim T, Park J, Seo J, Yoon H, Lee B, Lim H, Lee D, Kim P, Yoon C, Lee K, Zoh K-D (2020) Behavioral characteristics to airborne particles generated from commercial spray products. Environ Int 140:105747

    Article  CAS  Google Scholar 

  • Kroll JH, Seinfeld JH (2008) Chemistry of secondary organic aerosol: formation and evolution of low-volatility organics in the atmosphere. Atmos Environ 42(16):3593–3624. https://doi.org/10.1016/j.atmosenv.2008.01.003

  • Lewis RD, Ong KH, Emo B, Kennedy J, Kesavan J, Elliot M (2018) Resuspension of house dust and allergens during walking and vacuum cleaning. J Occup Environ Hyg 15:235–245

    Article  CAS  Google Scholar 

  • Li C-S, Hopke PK (1991) Characterization of Radon Decay products in a domestic environment. Indoor Air 4:539–561

    Google Scholar 

  • Li W, Hopke PK (1993) Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci Technol 19:305–316

    Article  CAS  Google Scholar 

  • Liu C, Cao J (2018) Potential role of intraparticle diffusion in dynamic partitioning of secondary organic aerosols. Atmospheric Pollut Res 9(6):1131–1136

    Google Scholar 

  • Liu C, Zhang Y (2016) Characterizing the equilibrium relationship between DEHP in PVC flooring and air using a closed-chamber SPME method. Build Environ 95:283–290

    Google Scholar 

  • Liu C, Zhang Y (2019) Relations between indoor and outdoor PM2.5 and constituent concentrations. Front Environ Sci Eng 13(1). https://doi.org/10.1007/s11783-019-1089-4

  • Liu C, Liu Z, Little JC, Zhang Y (2013) Convenient, rapid and accurate measurement of SVOC emission characteristics in experimental chambers. PLoS One 8(8):e72445

    Google Scholar 

  • Liu C, Zhang Y, Benning JL, Little JC (2015) The effect of ventilation on indoor exposure to semivolatile organic compounds. Indoor Air 25(3):285–296

    Google Scholar 

  • Liu C, Wang H, Guo H (2019) Redistribution of PM2.5‐associated nitrate and ammonium during outdoor‐to‐indoor transport. Indoor Air 29(3):460–468

    Google Scholar 

  • Long CM, Suh HH, Koutrakis P (2000) Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manage Assoc 50:1236–1250

    Article  CAS  Google Scholar 

  • Lunden MM, Kirchstetter TW, Thatcher TL, Hering SV, Brown NJ (2008) Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin. Atmos Environ 42(22):5660–5671

    Google Scholar 

  • Lung S-CC, Kao MC (2003) Worshippers’ exposure to particulate matter in two temples in Taiwan. J Air Waste Mange Assoc 53:130–135

    Article  Google Scholar 

  • McMurry PH, Friedlander SK (1979) New particle formation in the presence of an aerosol. Atmos Environ 13:1635–1651

    Article  CAS  Google Scholar 

  • Ogulei D, Hopke PK, Wallace LA (2006) Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization. Indoor Air 16:204–215

    Article  CAS  Google Scholar 

  • Özkaynak H, Xue J, Weker R, Butler D, Koutrakis P, Spengler J (1996) The Particle Team (PTEAM) study: analysis of the data. EPA Project Summary, EPA/600/SR-95/098, U.S. EPA: Research Triangle Park, NC.

    Google Scholar 

  • Pankow JF (1994) An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos Environ 28:185–188

    Article  CAS  Google Scholar 

  • Pankow JF (2003) Gas/particle partitioning of neutral and ionizing compounds to single and multi-phase aerosol particles. 1. Unified modeling framework. Atmos Environ 37:3323–3333

    Article  CAS  Google Scholar 

  • Rahman M, Hann N, Wilson A, Worrall-Carter L (2014) Electronic cigarettes: patterns of use, health effects, use in smoking cessation and regulatory issues. Tob Induc Dis 12:21

    Article  Google Scholar 

  • Rasmussen BB, Wang K, Karstoft JG, Skov SN, Køcks M, Andersen C, Wierzbicka A, Pagels J, Pedersen PB, Glasius M, Bilde M (2021) Emissions of ultrafine particles from five types of candles during steady burn conditions. Indoor Air. https://doi.org/10.1111/ina.12800

  • Rich DQ, Zhang W, Shao L, Squizzato S, Thurston SW, van Wijngaarden E, Croft D, Masiol M, Hopke PK (2019) Triggering of cardiovascular hospital admissions by source-specific fine particle concentrations in urban centers of New York State. Environ Int 126:387–394

    Article  CAS  Google Scholar 

  • Rom O, Pecorelli A, Valacchi G, Reznick AZ (2014) Are E-cigarettes a safe and good alternative to cigarette smoking? Ann N Y Acad Sci 1340:65–74

    Article  Google Scholar 

  • Salthammer T, Zhang Y, Mo J, Koch HM, Weschler CJ (2018) Assessing human exposure to organic pollutants in the indoor environment. Angew Chem Int Ed 57(38):12228–12263

    Google Scholar 

  • Samet JM, Wang SS (2001) Environmental tobacco smoke, Chapter 30. In: Spengler JD, Samet JM, McCarthy JF (eds) Indoor air quality handbook. McGraw Hill, New York, pp 30.1–30.30

    Google Scholar 

  • Sangiorgi G, Ferrero L, Ferrini BS, Lo Porto C, Perrone MG, Zangrando R, Gambaro A, Lazzati Z, Bolzacchini E (2013) Indoor airborne particle sources and semi-volatile partitioning effect of outdoor fine PM in offices. Atmos Environ 65:205–214

    Google Scholar 

  • Sarnat JA, Long CM, Koutrakis P, Coull BA, Schwartz J, Suh HH (2002) Using sulfur as a tracer of outdoor fine particulate matter. Environ Sci Technol 36(24):5305–5314

    Google Scholar 

  • Seinfeld JH, Pankow JF (2003) Organic atmospheric particulate material. Annu Rev Phys Chem 54(1):121–140

    Google Scholar 

  • Seneviratne S, Handagiripathira L, Sanjeevani S, Madusha D, Waduge VAA, Attanayake T, Bandara D, Hopke PK (2017) Identification of sources of fine particulate matter in Kandy, Sri Lanka. Aerosol Air Qual Res 17:476–484

    Article  CAS  Google Scholar 

  • Sheldon LS, Hartwell TD, Cox BG, Sickles II JE, Pellizzari ED, Smith MX, Perritt RL, Jones SM (1989) An investigation of infiltration and indoor air quality. Final Report. NY State ERDA Contract No. 736-CON-BCS-85. New York State Energy Research and Development Authority, Albany, NY

    Google Scholar 

  • Spengler JD, Dockery DW, Turner WA, Wolfson JM, Ferris BG Jr (1981) Long-term measurements of respirable sulfates and particles inside and outside homes. Atmos Environ 15:23–30

    Article  CAS  Google Scholar 

  • Spengler JD, Ware J Speizer F, Ferris B, Dockery D, Lebret E, Brunekreef B (1987) Harvard’s indoor air quality respiratory health study. In Indoor Air ‘87: Proceedings of the 4th International Conference on Indoor Air Quality and Climate (Seifert, B., ed.) Vol. 2, 742–746. Institute for water, soil, and air hygiene, W. Berlin.

    Google Scholar 

  • Stone R (2002) Counting the cost of London’s Killer Smog. Science 298:2106–2107

    Article  CAS  Google Scholar 

  • Thatcher TL, Layton DW (1995) Deposition, resuspension, and penetration of particles within a residence. Atmos Environ 29:1487–1497

    Article  CAS  Google Scholar 

  • Tiwari M, Sahu SK, Bhangare RC, Yousaf A, Pandit GG (2014) Particle size distributions of ultrafine combustion aerosols generated from household fuels. Atmos Pollut Res 5:145–150

    Article  Google Scholar 

  • US DHEW (U.S. Department of Health, Education, and Welfare) (1964) Smoking and health: report of the advisory committee to the surgeon general of the public health service. Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control, Washington: U.S.. PHS Publication No. 1103

    Google Scholar 

  • Vicente ED, Vicente AM, Evtyugina M, Calvo AI, Oduber F, Alegre CB, Castro A, Fraile R, Nunes T, Lucarelli F, Calzolai G, Nava S, Alves CA (2020) Impact of vacuum cleaning on indoor air quality. Build Environ 180:107059

    Article  Google Scholar 

  • Wallace L (1996) Indoor particles: a review. J Air Waste Manage Assoc 46:98–126

    Article  CAS  Google Scholar 

  • Wallace L, Wang F, Howard-Reed C, Persily A (2008) Contribution of gas and electric stoves to residential ultrafine particle concentrations between 2 and 64 nm: size distributions and emission and coagulation remission and coagulation rates. Environ Sci Technol 42:8641–8647

    Article  CAS  Google Scholar 

  • Wang D, Li Q, Shen G, Deng J, Zhou W, Hao J, Jiang J (2020) Significant ultrafine particle emissions from residential solid fuel combustion. Sci Total Environ 715:136992

    Article  CAS  Google Scholar 

  • Weschler CJ (2000) Ozone in indoor environments: concentration and chemistry. Indoor Air 10:269–288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip K. Hopke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hopke, P.K., Liu, C. (2022). Introduction to Particles in Indoor Air. In: Zhang, Y., Hopke, P.K., Mandin, C. (eds) Handbook of Indoor Air Quality. Springer, Singapore. https://doi.org/10.1007/978-981-10-5155-5_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5155-5_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5155-5

  • Online ISBN: 978-981-10-5155-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics