Skip to main content

Hormone Relaxin as Biomarker for Bone Health and Disease

  • Living reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Bone homeostasis is maintained by fine-tuning of the dynamic balance between bone resorption via osteoclasts and bone formation via osteoblasts. Bone metabolism-related biomarkers such as a soluble factor or type I collagen metabolism product specifically secreted by osteoblasts or osteoclasts are useful for evaluating the change in bone metabolism in a noninvasive manner in real time. Monitoring of bone metabolism-related biomarkers that are excreted in the urine or secreted into the bloodstream is quite useful for the diagnosis of various kinds of skeletal metabolism abnormalities. For example, an elevated level of a bone metabolism marker is a risk factor of bone fracture independent of bone density, as well as for bone density loss in the future. Relaxin (RLN) is a pleiotropic hormone of the insulin-like peptide hormone family, which is mainly secreted into the bloodstream from the ovary, uterus, and placenta during pregnancy. Therefore, RLN helps labor to progress by softening and widening the pubic symphysis and cervix, owing to its ability of remodeling the extracellular matrix by degrading collagen. The physiological roles of RLNs and relaxin family peptides through their receptors, relaxin family peptide receptors (RXFPs), in the reproductive system have been extensively studied. However, recent studies have shown that RLNs/RXFPs also play a key role in the cardiovascular system, renal function, organ protection, metabolism, cancer metastasis, and the central nervous system. The effectiveness of RLN for the treatment of acute heart failure is now assessed under phase III clinical trials. In addition to these broad physiological activities, its role in bone metabolism was also recently highlighted because of its ability to induce osteoclastogenesis, activate osteoclast function, and enhance osteoblast differentiation in vitro. In addition, the majority of men with RXFP2 mutations presented with symptoms of osteoporosis, and Rxfp2-deficient mice showed a lower bone mass and reduced osteoclast surface compared to their wild-type littermates. This chapter provides an overview of the biological functions of RLN and its receptors (RXFPs), with particular focus on bone metabolism. In addition, the utility and possibility of RLNs/RXFPs as biomarkers for bone health and disease are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALP:

Alkaline phosphatase

BAP:

Bone-specific alkaline phosphatase

BCE:

Bone collagen equivalents

BMP:

Bone morphogenetic protein

BMU:

Basic multicellular unit

BSP:

Bone sialoprotein

BTM:

Bone turnover marker

cAMP:

Cyclic adenosine monophosphate

c-FMS:

Colony-stimulating factor 1 receptor

CLIA:

Chemiluminescence immunoassay

COL1α1:

Collagen type I alpha 1

CREA:

Urinary creatinine

CTX:

Carboxy-terminal cross-linking telopeptide of type 1 collagen

DPD:

Deoxypyridinoline

DXA:

Dual-energy X-ray absorptiometry

ECLIA:

Electrochemiluminescence immunoassay

ERK:

Extracellular signal-regulated kinase

FGF:

Fibroblast growth factor

ICTP:

Carboxy-terminal cross-linking telopeptide of type 1 collagen generated by MMPs

IGF-1:

Insulin-like growth factor-1

INSL:

Insulin-like peptide

M-CSF:

Macrophage colony-stimulating factor

MMPs:

Matrix metalloproteinase

mRNA:

Messenger RNA

NFATc1:

Nuclear factor of activated T-cells cytoplasmic 1

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

N-MID:

Amino-terminal mid-fragment

NO:

Nitric oxide

NTX:

Amino-terminal cross-linking telopeptide of type 1 collagen

OC:

Osteocalcin

OPG:

Osteoprotegerin

OPN:

Osteopontin

PBMC:

Peripheral blood monocyte cells

PDL:

Periodontal ligament

PICP:

Carboxy-terminal propeptide of type 1 collagen

PINP:

Amino-terminal propeptide of type 1 collagen

PTH:

Parathyroid hormone

PYD:

Pyridinoline

RANK:

Receptor activator of NF-kB

RANKL:

Receptor activator of NF-kappaB ligand

RIA:

Radioimmunoassay

RLN (Rln):

Relaxin

RUNX2:

Runt-related transcription factor 2

RXFP (Rxfp):

Relaxin family peptide receptor

sRANKL:

Soluble RANKL

TGF-β:

Transforming growth factor-β

TRAP:

Tartrate-resistant acid phosphatase

TRAP5b:

Tartrate-resistant acid phosphatase type 5b

References

  • Ahmad N, Wang W, Nair R, Kapila S. Relaxin induces matrix-metalloproteinases-9 and -13 via RXFP1: induction of MMP-9 involves the PI3K, ERK, Akt and PKC-zeta pathways. Mol Cell Endocrinol. 2012;363:46–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed F, Gibbons SM. Bone-specific alkaline phosphatase by immunoassay or electrophoresis: their use in clinical practice. J Clin Pathol. 2015;68:246–8.

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. Receptors for relaxin family peptides. Ann N Y Acad Sci. 2005;1041:61–76.

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Ivell R, Sanborn BM, Sherwood OD, Summers RJ. International union of pharmacology LVII: recommendations for the nomenclature of receptors for relaxin family peptides. Pharmacol Rev. 2006;58:7–31.

    Article  CAS  PubMed  Google Scholar 

  • Bathgate RA, Halls ML, Van Der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev. 2013;93:405–80.

    Article  CAS  PubMed  Google Scholar 

  • Blecher AM, Richmond JC. Transient laxity of an anterior cruciate ligament-reconstructed knee related to pregnancy. Arthroscopy. 1998;14:77–9.

    Article  CAS  PubMed  Google Scholar 

  • Cernaro V, Lacquaniti A, Lupica R, et al. Relaxin: new pathophysiological aspects and pharmacological perspectives for an old protein. Med Res Rev. 2014;34:77–105.

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Maxson Jr RE. Recent advances in craniofacial morphogenesis. Dev Dyn. 2006;235:2353–75.

    Article  PubMed  Google Scholar 

  • Chao TY, Wu YY, Janckila AJ. Tartrate-resistant acid phosphatase isoform 5b (TRACP 5b) as a serum maker for cancer with bone metastasis. Clin Chim Acta. 2010;411:1553–64.

    Article  CAS  PubMed  Google Scholar 

  • Chow BS, Chew EG, Zhao C, Bathgate RA, Hewitson TD, Samuel CS. Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS One. 2012;7:e42714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crish JF, Soloff MS, Shaw AR. Changes in relaxin precursor mRNA levels in the rat ovary during pregnancy. J Biol Chem. 1986;261:1909–13.

    CAS  PubMed  Google Scholar 

  • Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11 Suppl 6:S2–17.

    Article  PubMed  Google Scholar 

  • Duarte C, Kobayashi Y, Kawamoto T, Moriyama K. Relaxin receptors 1 and 2 and nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) mRNAs are expressed in oral components of developing mice. Arch Oral Biol. 2014a;59:111–8.

    Article  CAS  PubMed  Google Scholar 

  • Duarte C, Kobayashi Y, Kawamoto T, Moriyama K. RELAXIN enhances differentiation and matrix mineralization through Relaxin/insulin-like family peptide receptor 2 (Rxfp2) in MC3T3-E1 cells in vitro. Bone. 2014b;65:92–101.

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.

    Article  CAS  PubMed  Google Scholar 

  • Facciolli A, Ferlin A, Gianesello L, Pepe A, Foresta C. Role of relaxin in human osteoclastogenesis. Ann N Y Acad Sci. 2009;1160:221–5.

    Article  CAS  PubMed  Google Scholar 

  • Farhadieh RD, Gianoutsos MP, Yu Y, Walsh WR. The role of bone morphogenetic proteins BMP-2 and BMP-4 and their related postreceptor signaling system (Smads) in distraction osteogenesis of the mandible. J Craniofac Surg. 2004;15:714–8.

    Article  PubMed  Google Scholar 

  • Ferlin A, Pepe A, Gianesello L, et al. Mutations in the insulin-like factor 3 receptor are associated with osteoporosis. J Bone Miner Res. 2008;23:683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferlin A, Pepe A, Facciolli A, Gianesello L, Foresta C. Relaxin stimulates osteoclast differentiation and activation. Bone. 2010;46:504–13.

    Article  CAS  PubMed  Google Scholar 

  • Ferlin A, Perilli L, Gianesello L, Taglialavoro G, Foresta C. Profiling insulin like factor 3 (INSL3) signaling in human osteoblasts. PLoS One. 2011;6:e29733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo KA, Rossi G, Cox ME. Relaxin promotes clustering, migration, and activation states of mononuclear myelocytic cells. Ann N Y Acad Sci. 2009;1160:353–60.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM, Straatsma C. Bone remodelling dynamics. Plast Reconstr Surg. 1964;33:196.

    Article  Google Scholar 

  • Garnero P, Grimaux M, Seguin P, Delmas PD. Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res. 1994;9:255–64.

    Article  CAS  PubMed  Google Scholar 

  • Ghattas MH, Mehanna ET, Mesbah NM, Abo-Elmatty DM. Relaxin-3 is associated with metabolic syndrome and its component traits in women. Clin Biochem. 2013;46:45–8.

    Article  CAS  PubMed  Google Scholar 

  • Gomez Jr B, Ardakani S, Ju J, et al. Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clin Chem. 1995;41:1560–6.

    CAS  PubMed  Google Scholar 

  • Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature. 1965;206:489–90.

    Article  CAS  Google Scholar 

  • Hellsing E, Hammarstrom L. The effects of pregnancy and fluoride on orthodontic tooth movements in rats. Eur J Orthod. 1991;13:223–30.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann M, Seibel MJ. The amino- and carboxyterminal cross-linked telopeptides of collagen type I, NTX-I and CTX-I: a comparative review. Clin Chim Acta. 2008;393:57–75.

    Article  CAS  PubMed  Google Scholar 

  • Hirate Y, Yamaguchi M, Kasai K. Effects of relaxin on relapse and periodontal tissue remodeling after experimental tooth movement in rats. Connect Tissue Res. 2012;53:207–19.

    Article  CAS  PubMed  Google Scholar 

  • Hisaw FL. Experimental relaxation of the pubic ligament of the guinea pig. Exp Biol Med. 1926;23:661–3.

    Article  Google Scholar 

  • Ho TY, Santora K, Chen JC, Frankshun AL, Bagnell CA. Effects of relaxin and estrogens on bone remodeling markers, receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG), in rat adjuvant-induced arthritis. Bone. 2011;48:1346–53.

    Article  CAS  PubMed  Google Scholar 

  • Hombach-Klonisch S, Bialek J, Trojanowicz B, et al. Relaxin enhances the oncogenic potential of human thyroid carcinoma cells. Am J Pathol. 2006;169:617–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivaska KK, Gerdhem P, Vaananen HK, Akesson K, Obrant KJ. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res. 2010;25:393–403.

    Article  CAS  PubMed  Google Scholar 

  • Jung K, Lein M. Bone turnover markers in serum and urine as diagnostic, prognostic and monitoring biomarkers of bone metastasis. Biochim Biophys Acta. 2014;1846:425–38.

    CAS  PubMed  Google Scholar 

  • Kim YJ, Lee MH, Wozney JM, Cho JY, Ryoo HM. Bone morphogenetic protein-2-induced alkaline phosphatase expression is stimulated by Dlx5 and repressed by Msx2. J Biol Chem. 2004;279:50773–80.

    Article  CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

    Article  CAS  PubMed  Google Scholar 

  • Kristiansson P, Holding C, Hughes S, Haynes D. Does human relaxin-2 affect peripheral blood mononuclear cells to increase inflammatory mediators in pathologic bone loss? Ann N Y Acad Sci. 2005;1041:317–9.

    Article  CAS  PubMed  Google Scholar 

  • Kruger TE, Miller AH, Godwin AK, Wang J. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol. 2014;89:330–41.

    Article  PubMed  Google Scholar 

  • Liu ZJ, King GJ, Gu GM, Shin JY, Stewart DR. Does human relaxin accelerate orthodontic tooth movement in rats? Ann N Y Acad Sci. 2005;1041:388–94.

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Lam HN, Menon RK. New members of the insulin family: regulators of metabolism, growth and now … reproduction. Pediatr Res. 2005;57:70R–3.

    Article  CAS  PubMed  Google Scholar 

  • Madan MS, Liu ZJ, Gu GM, King GJ. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats. Am J Orthod Dentofacial Orthop. 2007;131:8 e1–10.

    Article  PubMed  Google Scholar 

  • Maeno T, Moriishi T, Yoshida CA, et al. Early onset of Runx2 expression caused craniosynostosis, ectopic bone formation, and limb defects. Bone. 2011;49:673–82.

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Rodan G. Coupling of bone resorption and formation during bone remodeling. Osteoporosis. 2001;1:361–71.

    Article  Google Scholar 

  • Masella RS, Meister M. Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2006;129:458–68.

    Article  PubMed  Google Scholar 

  • Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys. 2008;473:201–9.

    Article  CAS  PubMed  Google Scholar 

  • Mcgorray SP, Dolce C, Kramer S, Stewart D, Wheeler TT. A randomized, placebo-controlled clinical trial on the effects of recombinant human relaxin on tooth movement and short-term stability. Am J Orthod Dentofacial Orthop. 2012;141:196–203.

    Article  PubMed  Google Scholar 

  • Mookerjee I, Unemori EN, Du XJ, Tregear GW, Samuel CS. Relaxin modulates fibroblast function, collagen production, and matrix metalloproteinase-2 expression by cardiac fibroblasts. Ann N Y Acad Sci. 2005;1041:190–3.

    Article  CAS  PubMed  Google Scholar 

  • Moon JS, Kim SH, Oh SH, et al. Relaxin augments BMP-2-induced osteoblast differentiation and bone formation. J Bone Miner Res. 2014;29:1586–96.

    Article  CAS  PubMed  Google Scholar 

  • Morriss-Kay GM. Derivation of the mammalian skull vault. J Anat. 2001;199:143–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 2012;23:582–90.

    Article  CAS  PubMed  Google Scholar 

  • Nicozisis JL, Nah-Cederquist HD, Tuncay OC. Relaxin affects the dentofacial sutural tissues. Clin Orthod Res. 2000;3:192–201.

    Article  PubMed  Google Scholar 

  • Ortuno MJ, Susperregui AR, Artigas N, Rosa JL, Ventura F. Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions. Bone. 2013;52:548–56.

    Article  CAS  PubMed  Google Scholar 

  • Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765–71.

    Article  CAS  PubMed  Google Scholar 

  • Pagani F, Francucci CM, Moro L. Markers of bone turnover: biochemical and clinical perspectives. J Endocrinol Invest. 2005;28:8–13.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM. The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif Tissue Int. 1984;36 Suppl 1:S37–45.

    Article  PubMed  Google Scholar 

  • Ponikowski P, Mitrovic V, Ruda M, et al. A randomized, double-blind, placebo-controlled, multicentre study to assess haemodynamic effects of serelaxin in patients with acute heart failure. Eur Heart J. 2014;35:431–41.

    Article  CAS  PubMed  Google Scholar 

  • Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285:25103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen CJ, Compston JE, Lian JB. ASBMR primer on the metabolic bone diseases and disorders of mineral metabolism. Hoboken: Wiley; 2009.

    Google Scholar 

  • Samuel CS, Unemori EN, Mookerjee I, et al. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology. 2004;145:4125–33.

    Article  CAS  PubMed  Google Scholar 

  • Stewart DR, Sherick P, Kramer S, Breining P. Use of relaxin in orthodontics. Ann N Y Acad Sci. 2005;1041:379–87.

    Article  CAS  PubMed  Google Scholar 

  • Strauss PG, Closs EI, Schmidt J, Erfle V. Gene expression during osteogenic differentiation in mandibular condyles in vitro. J Cell Biol. 1990;110:1369–78.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Epker B, Frost HM. Resorption precedes formative activity. Surg Forum. 1964;15:437–8.

    CAS  PubMed  Google Scholar 

  • Takano M, Yamaguchi M, Nakajima R, Fujita S, Kojima T, Kasai K. Effects of relaxin on collagen type I released by stretched human periodontal ligament cells. Orthod Craniofac Res. 2009;12:282–8.

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wu X, Lei W, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teerlink JR, Cotter G, Davison BA, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29–39.

    Article  CAS  PubMed  Google Scholar 

  • Unemori EN, Pickford LB, Salles AL, et al. Relaxin induces an extracellular matrix-degrading phenotype in human lung fibroblasts in vitro and inhibits lung fibrosis in a murine model in vivo. J Clin Invest. 1996;98:2739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xian L, Wu X, Pang L, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012;18:1095–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SY, Ko HM, Kang JH, et al. Relaxin is up-regulated in the rat ovary by orthodontic tooth movement. Eur J Oral Sci. 2011;119:115–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukiho Kobayashi , Carolina Duarte or Keiji Moriyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Kobayashi, Y., Duarte, C., Moriyama, K. (2015). Hormone Relaxin as Biomarker for Bone Health and Disease. In: Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7745-3_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7745-3_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics