Skip to main content

Biomarkers for Abdominal Aortic Aneurysm

  • Living reference work entry
  • First Online:
Biomarkers in Cardiovascular Disease

Abstract

Abdominal aorta aneurysm (AAA) is a serious threat for human life, especially in such cases when it is asymptomatic until aneurysm rupture, which is a general cause of death in AAA subjects. The aim of the present chapter, firstly, is to give a conceptual description of the potential biomarkers that can correlate and predict the natural history of an AAA. Secondly, the aim of this chapter is to summarize the developments in the literature concerning the novel biomarkers and their potential screening and therapeutic values. In conclusion, currently no specific laboratory markers allow to screen for the disease and to monitor its progression or the results of treatment. Further studies and studies in larger patient groups are required in order to validate biomarkers as cost-effective tools in the AAA disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul-Hussien H, Hanemaaijer R, Kleemann R, Verhaaren BF, van Bockel JH, Lindeman JH. The pathophysiology of abdominal aortic aneurysm growth: corresponding and discordant inflammatory and proteolytic processes in abdominal aortic and popliteal artery aneurysms. J Vasc Surg. 2010;51:1479–87.

    Google Scholar 

  • Al-Barjas HS, Ariens R, Grant P, Scott JA. Raised plasma fibrinogen concentration in patients with abdominal aortic aneurysm. Angiology. 2006;57:607–14.

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi K, Shahrzad S, Iida S, Tomida C, Hirayama A, Nagase S, Takemura K, Koyama A, Ohba S, Narita M, Cohen BD. Role of nitric oxide in the synthesis of guanidinosuccinic acid, an activator of the N-methyl-D-aspartate receptor. Kidney Int Suppl. 2001;78:S93–6.

    Article  CAS  PubMed  Google Scholar 

  • Atturu G, Brouilette S, Samani NJ, London NJ, Sayers RD, Bown MJ. Short leukocyte telomere length is associated with abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg. 2010;39:559–64.

    Google Scholar 

  • Becker RC. Emerging paradigms, platforms, and unifying themes in biomarker science. J Am Coll Cardiol. 2007;50:1777–80.

    Article  PubMed  Google Scholar 

  • Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG. Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab. 1986;63:954–9.

    Article  CAS  PubMed  Google Scholar 

  • Bown MJ, Jones GT, Harrison SC, Wright BJ, Bumpstead S, Baas AF, Gretarsdottir S, Badger SA, Bradley DT, Burnand K, Child AH, Clough RE, Cockerill G, Hafez H, Scott DJ, Futers S, Johnson A, Sohrabi S, Smith A, Thompson MM, van Bockxmeer FM, Waltham M, Matthiasson SE, Thorleifsson G, Thorsteinsdottir U, Blankensteijn JD, Teijink JA, Wijmenga C, de Graaf J, Kiemeney LA, Assimes TL, Mcpherson R, Folkersen L, Franco-Cereceda A, Palmen J, Smith AJ, Sylvius N, Wild JB, Refstrup M, Edkins S, Gwilliam R, Hunt SE, Potter S, Lindholt JS, Frikke-Schmidt R, Tybjaerg-Hansen A, Hughes AE, Golledge J, Norman PE, van Rij A, Powell JT, Eriksson P, Stefansson K, Thompson JR, Humphries SE, Sayers RD, Deloukas P, Samani NJ. Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1. Am J Hum Genet. 2011;89:619–27.

    Google Scholar 

  • Brady AR, Thompson SG, Fowkes FG, Greenhalgh RM, Powell JT. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation. 2004;110:16–21.

    Article  PubMed  Google Scholar 

  • Chan CY, Chan YC, Cheuk BL, Cheng SW. A pilot study on low-density lipoprotein receptor-related protein-1 in Chinese patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2013;46:549–56.

    Article  CAS  PubMed  Google Scholar 

  • Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem. 1997;272:32401–10.

    Article  CAS  PubMed  Google Scholar 

  • Ciborowski M, Teul J, Martin-Ventura JL, Egido J, Barbas C. Metabolomics with LC-QTOF-MS permits the prediction of disease stage in aortic abdominal aneurysm based on plasma metabolic fingerprint. PLoS One. 2012;7:e31982.

    Google Scholar 

  • Cornuz J, Sidoti Pinto C, Tevaearai H, Egger M. Risk factors for asymptomatic abdominal aortic aneurysm: systematic review and meta-analysis of population-based screening studies. Eur J Public Health. 2004;14:343–9.

    Article  PubMed  Google Scholar 

  • Dawson J, Cockerill G, Choke E, Loftus I, Thompson MM. Aortic aneurysms as a source of circulating interleukin-6. Ann N Y Acad Sci. 2006;1085:320–3.

    Article  CAS  PubMed  Google Scholar 

  • Dawson J, Cockerill GW, Choke E, Belli AM, Loftus I, Thompson MM. Aortic aneurysms secrete interleukin-6 into the circulation. J Vasc Surg. 2007;45:350–6.

    Article  PubMed  Google Scholar 

  • De Haro J, Acin F, Bleda S, Varela C, Medina FJ, Esparza L. Prediction of asymptomatic abdominal aortic aneurysm expansion by means of rate of variation of C-reactive protein plasma levels. J Vasc Surg. 2012;56:45–52.

    Article  PubMed  Google Scholar 

  • Dimitroulis D, Katsargyris A, Klonaris C, Avgerinos ED, Fragou-Plemenou M, Kouraklis G, Liapis CD. Telomerase expression on aortic wall endothelial cells is attenuated in abdominal aortic aneurysms compared to healthy nonaneurysmal aortas. J Vasc Surg. 2011;54:1778–83.

    Google Scholar 

  • Domanovits H, Schillinger M, Mullner M, Holzenbein T, Janata K, Bayegan K, Laggner AN. Acute phase reactants in patients with abdominal aortic aneurysm. Atherosclerosis. 2002;163:297–302.

    Article  CAS  PubMed  Google Scholar 

  • Dueck AD, Kucey DS, Johnston KW, Alter D, Laupacis A. Long-term survival and temporal trends in patient and surgeon factors after elective and ruptured abdominal aortic aneurysm surgery. J Vasc Surg. 2004;39:1261–7.

    Article  PubMed  Google Scholar 

  • Eugster T, Huber A, Obeid T, Schwegler I, Gurke L, Stierli P. Aminoterminal propeptide of type III procollagen and matrix metalloproteinases-2 and −9 failed to serve as serum markers for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2005;29:378–82.

    Article  CAS  PubMed  Google Scholar 

  • Folkesson M, Kazi M, Zhu C, Silveira A, Hemdahl AL, Hamsten A, Hedin U, Swedenborg J, Eriksson P. Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms. Thromb Haemost. 2007;98:427–33.

    CAS  PubMed  Google Scholar 

  • Fornasa G, Clement M, Groyer E, Gaston AT, Khallou-Laschet J, Morvan M, Guedj K, Kaveri SV, Tedgui A, Michel JB, Nicoletti A, Caligiuri G. A CD31-derived peptide prevents angiotensin II-induced atherosclerosis progression and aneurysm formation. Cardiovasc Res. 2012;94:30–7.

    Google Scholar 

  • Galora S, Saracini C, Palombella AM, Pratesi G, Pulli R, Pratesi C, Abbate R, Giusti B. Low-density lipoprotein receptor-related protein 5 gene polymorphisms and genetic susceptibility to abdominal aortic aneurysm. J Vasc Surg. 2013;58:1062.e1–8.

    Article  Google Scholar 

  • Gamberi T, Puglia M, Guidi F, Magherini F, Bini L, Marzocchini R, Modesti A, Modesti PA. A proteomic approach to identify plasma proteins in patients with abdominal aortic aneurysm. Mol Biosyst. 2011;7:2855–62.

    Google Scholar 

  • Ghigliotti G, Barisione C, Garibaldi S, Brunelli C, Palmieri D, Spinella G, Pane B, Spallarossa P, Altieri P, Fabbi P, Sambuceti G, Palombo D. CD16(+) monocyte subsets are increased in large abdominal aortic aneurysms and are differentially related with circulating and cell-associated biochemical and inflammatory biomarkers. Dis Markers. 2013;34:131–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giusti B, Rossi L, Lapini I, Magi A, Pratesi G, Lavitrano M, Biasi GM, Pulli R, Pratesi C, Abbate R. Gene expression profiling of peripheral blood in patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2009;38:104–12.

    Article  CAS  PubMed  Google Scholar 

  • Gj D. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  • Golledge J, Mallat Z, Tedgui A, Norman PE. Serum secreted phospholipase A2 is associated with abdominal aortic aneurysm presence but not progression. Atherosclerosis. 2011;216:458–60.

    Google Scholar 

  • Golledge J, van Bockxmeer F, Jamrozik K, Mccann M, Norman PE. Association between serum lipoproteins and abdominal aortic aneurysm. Am J Cardiol. 2010;105:1480–4.

    Google Scholar 

  • Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D, Sculpher MJ. Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med. 2010;362:1863–71.

    Google Scholar 

  • Harris DA, Al-Allak A, Thomas J, Hedges AR. Influence of presentation on outcome in abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2006;32:140–5.

    Article  CAS  PubMed  Google Scholar 

  • Hovsepian DM, Ziporin SJ, Sakurai MK, Lee JK, Curci JA, Thompson RW. Elevated plasma levels of matrix metalloproteinase-9 in patients with abdominal aortic aneurysms: a circulating marker of degenerative aneurysm disease. J Vasc Interv Radiol. 2000;11:1345–52.

    Article  CAS  PubMed  Google Scholar 

  • Jones KG, Brull DJ, Brown LC, Sian M, Greenhalgh RM, Humphries SE, Powell JT. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation. 2001;103:2260–5.

    Article  CAS  PubMed  Google Scholar 

  • Juvonen J, Surcel HM, Satta J, Teppo AM, Bloigu A, Syrjala H, Airaksinen J, Leinonen M, Saikku P, Juvonen T. Elevated circulating levels of inflammatory cytokines in patients with abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1997;17:2843–7.

    Article  CAS  PubMed  Google Scholar 

  • Katrancioglu N, Manduz S, Karahan O, Yilmaz MB Sezgin I, Bagci G, Berkan O. The role of the CCR2 gene polymorphism in abdominal aortic aneurysms. Angiology. 2011;62:140–3.

    Google Scholar 

  • Kimura T, Yoshimura K, Aoki H, Imanaka-Yoshida K, Yoshida T, Ikeda Y, Morikage N, Endo H, Hamano K, Imaizumi T, Hiroe M, Aonuma K, Matsuzaki M. Tenascin-C is expressed in abdominal aortic aneurysm tissue with an active degradation process. Pathol Int. 2011;61:559–64.

    Google Scholar 

  • Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995;86:1243–54.

    CAS  PubMed  Google Scholar 

  • Koole D, Hurks R, Schoneveld A, Vink A, Golledge J, Moran CS, de Kleijn DP, van Herwaarden JA, de Vries JP, Laman JD, Huizinga R, Pasterkamp G, Moll FL. Osteoprotegerin is associated with aneurysm diameter and proteolysis in abdominal aortic aneurysm disease. Arterioscler Thromb Vasc Biol. 2012;32:1497–504.

    Article  CAS  PubMed  Google Scholar 

  • Lederle FA, Johnson GR, Wilson SE, Littooy FN, Krupski WC, Bandyk D, Acher CW, Chute EP, Hye RJ, Gordon IL, Freischlag J, Averbook AW, Makaroun MS. Yield of repeated screening for abdominal aortic aneurysm after a 4-year interval. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. Arch Intern Med. 2000;160:1117–21.

    Article  CAS  PubMed  Google Scholar 

  • Lillvis JH, Kyo Y, Tromp G, Lenk GM, Li M, Lu Q, Igo RP Jr, Sakalihasan N, Ferrell RE, Schworer CM, Gatalica Z, Land S, Kuivaniemi H. Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19. BMC Med Genet. 2011;12:14.

    Google Scholar 

  • Limet R, Sakalihassan N, Albert A. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J Vasc Surg. 1991;14:540–8.

    Article  CAS  PubMed  Google Scholar 

  • Lindholt JS, Erlandsen EJ, Henneberg EW. Cystatin C deficiency is associated with the progression of small abdominal aortic aneurysms. Br J Surg. 2001a;88:1472–5.

    Article  CAS  PubMed  Google Scholar 

  • Lindholt JS, Heegaard NH, Vammen S, Fasting H, Henneberg EW, Heickendorff L. Smoking, but not lipids, lipoprotein(a) and antibodies against oxidised LDL, is correlated to the expansion of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2001b;21:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Lindholt JS, Jorgensen B, Klitgaard NA, Henneberg EW. Systemic levels of cotinine and elastase, but not pulmonary function, are associated with the progression of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2003a;26:418–22.

    Article  CAS  PubMed  Google Scholar 

  • Lindholt JS, Jorgensen B, Shi GP, Henneberg EW. Relationships between activators and inhibitors of plasminogen, and the progression of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2003b;25:546–51.

    Article  CAS  PubMed  Google Scholar 

  • Lindholt JS, Martin-Ventura JL, Urbonavicius S, Ramos-Mozo P, Flyvbjerg A, Egido J, Henneberg EW, Frystyk J. Insulin-like Growth Factor I – A Novel Biomarker of Abdominal Aortic Aneurysms. Eur J Vasc Endovasc Surg. 2011;42:560–2.

    Google Scholar 

  • Lindholt JS, Vammen S, Fasting H, Henneberg EW, Heickendorff L. The plasma level of matrix metalloproteinase 9 may predict the natural history of small abdominal aortic aneurysms. A preliminary study. Eur J Vasc Endovasc Surg. 2000;20:281–5.

    Article  CAS  PubMed  Google Scholar 

  • Mackie EJ, Scott-Burden T, Hahn AW, Kern F, Bernhardt J, Regenass S, Weller A, Buhler FR. Expression of tenascin by vascular smooth muscle cells. Alterations in hypertensive rats and stimulation by angiotensin II. Am J Pathol. 1992;141:377–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maehira F, Luyo GA, Miyagi I, Oshiro M, Yamane N, Kuba M, Nakazato Y. Alterations of serum selenium concentrations in the acute phase of pathological conditions. Clin Chim Acta. 2002;316:137–46.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Ventura JL, Lindholt JS, Moreno JA, Vega de Ceniga M, Meilhac O, Michel JB, Egido J, Blanco-COLIO LM. Soluble TWEAK plasma levels predict expansion of human abdominal aortic aneurysms. Atherosclerosis. 2011;214:486–9.

    Google Scholar 

  • Martinez-Pinna R, Ramos-Mozo P, Madrigal-Matute J, Blanco-Colio LM, Lopez JA, Calvo E, Camafeita E, Lindholt JS, Meilhac O, Delbosc S, Michel JB, de Ceniga MV, Egido J, Martin-Ventura JL. Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2011;31:935–43.

    Google Scholar 

  • Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal. 2009;3:287–310.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, van Herwaarden JA, Holt PJ, van Keulen JW, Rantner B, Schlosser FJ, Setacci F, Ricco JB, European Society for Vascular. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41 Suppl 1:S1–58.

    Article  PubMed  Google Scholar 

  • Moreno JA, Dejouvencel T, Labreuche J, Smadja DM, Dussiot M, Martin-Ventura JL, Egido J, Gaussem P, Emmerich J, Michel JB, Blanco-Colio LM, Meilhac O. Peripheral artery disease is associated with a high CD163/TWEAK plasma ratio. Arterioscler Thromb Vasc Biol. 2010;30:1253–62.

    Google Scholar 

  • Nakamura M, Tachieda R, Niinuma H, Ohira A, Endoh S, Hiramori K, Makita S. Circulating biochemical marker levels of collagen metabolism are abnormal in patients with abdominal aortic aneurysm. Angiology. 2000;51:385–92.

    Article  CAS  PubMed  Google Scholar 

  • Newman KM, Jean-Claude J, Li H, Ramey WG, Tilson MD. Cytokines that activate proteolysis are increased in abdominal aortic aneurysms. Circulation. 1994;90:II224–7.

    CAS  PubMed  Google Scholar 

  • Norman P, Spencer CA, Lawrence-Brown MM, Jamrozik K. C-reactive protein levels and the expansion of screen-detected abdominal aortic aneurysms in men. Circulation. 2004;110:862–6.

    Article  CAS  PubMed  Google Scholar 

  • Norrgard O, Frohlander N, Beckman G, Angqvist KA. Association between haptoglobin groups and aortic abdominal aneurysms. Hum Hered. 1984;34:166–9.

    Article  CAS  PubMed  Google Scholar 

  • Pan JH, Lindholt JS, Sukhova GK, Baugh JA, Henneberg EW, Bucala R, Donnelly SC, Libby P, Metz C, Shi GP. Macrophage migration inhibitory factor is associated with aneurysmal expansion. J Vasc Surg. 2003;37:628–35.

    Article  CAS  PubMed  Google Scholar 

  • Pan JP, Cheng TM, Shih CC, Chiang SC, Chou SC, Mao SJ, Lai ST. Haptoglobin phenotypes and plasma haptoglobin levels in patients with abdominal aortic aneurysm. J Vasc Surg. 2011;53:1189–94.

    Google Scholar 

  • Parry DJ, Al-Barjas HS, Chappell L, Rashid ST, Ariens RA, Scott DJ. Markers of inflammation in men with small abdominal aortic aneurysm. J Vasc Surg. 2010;52:145–51.

    Google Scholar 

  • Powell JT, Bashir A, Dawson S, Vine N, Henney AM, Humphries SE, Greenhalgh RM. Genetic variation on chromosome 16 is associated with abdominal aortic aneurysm. Clin Sci (Lond). 1990;78:13–6.

    Article  CAS  Google Scholar 

  • Prabhu A, Sujatha DI, Ninan B, Vijayalakshmi MA. Neutrophil gelatinase associated lipocalin as a biomarker for acute kidney injury in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Ann Vasc Surg. 2010;24:525–31.

    Google Scholar 

  • Ramazani M, Lundin C, Sund M. Increased circulating levels of basement-membrane components in patients with abdominal aortic aneurysms – a pilot study. Eur J Vasc Endovasc Surg. 2011;42:484–7.

    Google Scholar 

  • Ramos-Mozo P, Madrigal-Matute J, Martinez-Pinna R, Blanco-Colio LM, Lopez JA, Camafeita E, Meilhac O, Michel JB, Aparicio C, de Ceniga MV, Egido J, Martin-Ventura JL. Proteomic analysis of polymorphonuclear neutrophils identifies catalase as a novel biomarker of abdominal aortic aneurysm: potential implication of oxidative stress in abdominal aortic aneurysm progression. Arterioscler Thromb Vasc Biol. 2011;31:3011–9.

    Google Scholar 

  • Ramos-Mozo P, Madrigal-Matute J, Vega de Ceniga M, Blanco-Colio LM, Meilhac O, Feldman L, Michel JB, Clancy P, Golledge J, Norman PE, Egido J, Martin-Ventura JL. Increased plasma levels of NGAL, a marker of neutrophil activation, in patients with abdominal aortic aneurysm. Atherosclerosis. 2012;220:552–6.

    Google Scholar 

  • Ramos-Mozo P, Rodriguez C, Pastor-Vargas C, Blanco-Colio LM, Martinez-Gonzalez J, Meilhac O, Michel JB, de Ceniga MV, Egido J, Martin-Ventura JL. Plasma profiling by a protein array approach identifies IGFBP-1 as a novel biomarker of abdominal aortic aneurysm. Atherosclerosis. 2012;221:544–50.

    Google Scholar 

  • Reilly JM, Sicard GA, Lucore CL. Abnormal expression of plasminogen activators in aortic aneurysmal and occlusive disease. J Vasc Surg. 1994;19:865–72.

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:1557–65.

    Article  CAS  PubMed  Google Scholar 

  • Rohde LE, Arroyo LH, Rifai N, Creager MA, Libby P, Ridker PM, Lee RT. Plasma concentrations of interleukin-6 and abdominal aortic diameter among subjects without aortic dilatation. Arterioscler Thromb Vasc Biol. 1999;19:1695–9.

    Article  CAS  PubMed  Google Scholar 

  • Sadrzadeh SM, Bozorgmehr J. Haptoglobin phenotypes in health and disorders. Am J Clin Pathol. 2004;121(Suppl):S97–104.

    PubMed  Google Scholar 

  • Sakthivel P, Shively V, Kakoulidou M, Pearce W, Lefvert AK. The soluble forms of CD28, CD86 and CTLA-4 constitute possible immunological markers in patients with abdominal aortic aneurysm. J Intern Med. 2007;261:399–407.

    Article  CAS  PubMed  Google Scholar 

  • Sandford B, Bown M, London N, Sayers R. The role of the CCR5 Delta32 polymorphism in abdominal aortic aneurysms. Int J Immunogenet. 2009;36:199–205.

    Article  CAS  PubMed  Google Scholar 

  • Sangiorgi G, D’Averio R, Mauriello A, Bondio M, Pontillo M, Castelvecchio S, Trimarchi S, Tolva V, Nano G, Rampoldi V, Spagnoli LG, Inglese L. Plasma levels of metalloproteinases-3 and −9 as markers of successful abdominal aortic aneurysm exclusion after endovascular graft treatment. Circulation. 2001;104:I288–95.

    Article  CAS  PubMed  Google Scholar 

  • Satta J, Haukipuro K, Kairaluoma MI, Juvonen T. Aminoterminal propeptide of type III procollagen in the follow-up of patients with abdominal aortic aneurysms. J Vasc Surg. 1997;25:909–15.

    Article  CAS  PubMed  Google Scholar 

  • Scott DJ, Allen CJ, Honstvet CA, Hanby AM, Hammond C, Johnson AB, Perry SL, Jones PF. Lymphangiogenesis in abdominal aortic aneurysm. Br J Surg. 2013;100:895–903.

    Article  CAS  PubMed  Google Scholar 

  • Shi GP, Sukhova GK, Grubb A, Ducharme A, Rhode LH, Lee RT, Ridker PM, Libby P, Chapman HA. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest. 1999;104:1191–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shireman PK, Mccarthy WJ, Pearce WH, Shively VP, Cipollone M, Kwaan HC. Elevations of tissue-type plasminogen activator and differential expression of urokinase-type plasminogen activator in diseased aorta. J Vasc Surg. 1997;25:157–64.

    Article  CAS  PubMed  Google Scholar 

  • Speelman L, Hellenthal FA, Pulinx B, Bosboom EM, Breeuwer M, van Sambeek MR, van de Vosse FN, Jacobs MJ, Wodzig WK, Schurink GW. The influence of wall stress on AAA growth and biomarkers. Eur J Vasc Endovasc Surg. 2010;39:410–6.

    Google Scholar 

  • Takagi H, Manabe H, Kawai N, Goto S, Umemoto T. Plasma fibrinogen and D-dimer concentrations are associated with the presence of abdominal aortic aneurysm: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2009a;38:273–7.

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Manabe H, Kawai N, Goto SN, Umemoto T. Serum high-density and low-density lipoprotein cholesterol is associated with abdominal aortic aneurysm presence: a systematic review and meta-analysis. Int Angiol 2010;29:371–5.

    Google Scholar 

  • Takagi H, Manabe H, Kawai N, Goto SN, Umemoto T. Circulating lipoprotein(a) concentrations and abdominal aortic aneurysm presence. Interact Cardiovasc Thorac Surg. 2009b;9:467–70.

    Article  PubMed  Google Scholar 

  • Takagi H, Manabe H, Kawai N, Goto SN, Umemoto T. Circulating matrix metalloproteinase-9 concentrations and abdominal aortic aneurysm presence: a meta-analysis. Interact Cardiovasc Thorac Surg. 2009c;9:437–40.

    Article  PubMed  Google Scholar 

  • Thompson AR, Golledge J, Cooper JA, Hafez H, Norman PE, Humphries SE. Sequence variant on 9p21 is associated with the presence of abdominal aortic aneurysm disease but does not have an impact on aneurysmal expansion. Eur J Hum Genet. 2009;17:391–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Treska V, Topolcan O. Plasma and tissue levels of collagen types I and III markers in patients with abdominal aortic aneurysms. Int Angiol. 2000;19:64–8.

    CAS  PubMed  Google Scholar 

  • Treska V, Topolcan O, Pecen L. Cytokines as plasma markers of abdominal aortic aneurysm. Clin Chem Lab Med. 2000;38:1161–4.

    Article  CAS  PubMed  Google Scholar 

  • Urbonavicius S, Urbonaviciene G, Honore B, Henneberg EW, Vorum H, Lindholt JS. Potential circulating biomarkers for abdominal aortic aneurysm expansion and rupture­­a systematic review. Eur J Vasc Endovasc Surg. 2008;36:273–80. discussion 281–2.

    Article  CAS  PubMed  Google Scholar 

  • Vainas T, Lubbers T, Stassen FR, Herngreen SB, van Dieijen-Visser MP, Bruggeman CA, Kitslaar PJ, Schurink GW. Serum C-reactive protein level is associated with abdominal aortic aneurysm size and may be produced by aneurysmal tissue. Circulation. 2003;107:1103–5.

    Article  PubMed  Google Scholar 

  • Vainas T, Stassen FR, de Graaf R, Twiss EL, Herngreen SB, Welten RJ, van den Akker LH, van Dieijen-Visser MP, Bruggeman CA, Kitslaar PJ. C-reactive protein in peripheral arterial disease: relation to severity of the disease and to future cardiovascular events. J Vasc Surg. 2005;42:243–51.

    Article  PubMed  Google Scholar 

  • van Spyk EN, Chun KC, Samadzadeh KM, Peters JH, Lee ES. Increased levels of CD34+ cells are associated in patients with abdominal aortic aneurysms compared with patients with peripheral vascular disease. J Surg Res. 2013;184:638–43.

    Article  PubMed  Google Scholar 

  • Vega de Ceniga M, Esteban M, Barba A, Estallo L, Blanco-Colio LM, Martin-Ventura JL. Assessment of biomarkers and predictive model for short-term prospective abdominal aortic aneurysm growth-a pilot study. Ann Vasc Surg. 2014;28:1642–8.

    Google Scholar 

  • Vega de Ceniga M, Esteban M, Quintana JM, Barba A, Estallo L, De la Fuente N, Viviens B, Martin-Ventura JL. Search for serum biomarkers associated with abdominal aortic aneurysm growth­­a pilot study. Eur J Vasc Endovasc Surg. 2009;37:297–9.

    Article  CAS  PubMed  Google Scholar 

  • Wallinder J, Bergstrom J, Henriksson AE. Discovery of a novel circulating biomarker in patients with abdominal aortic aneurysm: a pilot study using a proteomic approach. Clin Transl Sci. 2012;5:56–9.

    Google Scholar 

  • Wanhainen A, Nilsson TK, Bergqvist D, Boman K, Bjorck M. Elevated tissue plasminogen activator in patients with screening-detected abdominal aortic aneurysm. J Vasc Surg. 2007;45:1109–13.

    Article  PubMed  Google Scholar 

  • Wei Y, Xiong J, Zuo S, Chen F, Chen D, Wu T, Guo W, Hu Y. Association of polymorphisms on chromosome 9p21.3 region with increased susceptibility of abdominal aortic aneurysm in a Chinese Han population. J Vasc Surg. 2014;59:879–85.

    Google Scholar 

  • Wiernicki I, Millo B, Safranow K, Gorecka-Szyld B, Gutowski P. MMP-9, homocysteine and CRP circulating levels are associated with intraluminal thrombus thickness of abdominal aortic aneurysms – new implication of the old biomarkers. Dis Markers. 2011;31:67–74.

    Google Scholar 

  • Wiernicki I, Safranow K, Baranowska-Bosiacka I, Piatek J, Gutowski P. Haptoglobin 2–1 phenotype predicts rapid growth of abdominal aortic aneurysms. J Vasc Surg. 2010;52:691–6.

    Google Scholar 

  • Wilson KA, Lindholt JS, Hoskins PR, Heickendorff L, Vammen S, Bradbury AW. The relationship between abdominal aortic aneurysm distensibility and serum markers of elastin and collagen metabolism. Eur J Vasc Endovasc Surg. 2001;21:175–8.

    Article  CAS  PubMed  Google Scholar 

  • Wilson WR, Anderton M, Choke EC, Dawson J, Loftus IM, Thompson MM. Elevated plasma MMP1 and MMP9 are associated with abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg. 2008a;35:580–4.

    Article  CAS  PubMed  Google Scholar 

  • Wilson WR, Anderton M, Schwalbe EC, Jones JL, Furness PN, Bell PR, Thompson MM. Matrix metalloproteinase-8 and −9 are increased at the site of abdominal aortic aneurysm rupture. Circulation. 2006;113:438–45.

    Article  CAS  PubMed  Google Scholar 

  • Wilson WR, Herbert KE, Mistry Y, Stevens SE, Patel HR, Hastings RA, Thompson MM, Williams B. Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J. 2008b;29:2689–94.

    Article  CAS  PubMed  Google Scholar 

  • Wilson WR, Schwalbe EC, Jones JL, Bell PR, Thompson MM. Matrix metalloproteinase 8 (neutrophil collagenase) in the pathogenesis of abdominal aortic aneurysm. Br J Surg. 2005;92:828–33.

    Article  CAS  PubMed  Google Scholar 

  • Witkowska AM, Borawska MH, Gacko M. Relationship among TNF-alpha, sICAM-1, and selenium in presurgical patients with abdominal aortic aneurysms. Biol Trace Elem Res. 2006;114:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Wong YY, Flicker L, Yeap BB, Mccaul KA, Hankey GJ, Norman PE. Is hypovitaminosis D associated with abdominal aortic aneurysm, and is there a dose–response relationship? Eur J Vasc Endovasc Surg. 2013a;45:657–64.

    Article  CAS  PubMed  Google Scholar 

  • Wong YY, Golledge J, Flicker L, Mccaul KA, Hankey GJ, van Bockxmeer FM, Yeap BB, Norman PE. Plasma total homocysteine is associated with abdominal aortic aneurysm and aortic diameter in older men. J Vasc Surg. 2013b;58:364–70.

    Article  PubMed  Google Scholar 

  • Yamazumi K, Ojiro M, Okumura H, aikou T. An activated state of blood coagulation and fibrinolysis in patients with abdominal aortic aneurysm. Am J Surg. 1998;175:297–301.

    Article  CAS  PubMed  Google Scholar 

  • Yin M, Zhang J, Wang Y, Wang S, Bockler D, Duan Z, Xin S. Deficient CD4+ CD25+ T regulatory cell function in patients with abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2010;30:1825–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrios Moris .

Editor information

Editors and Affiliations

Definitions of Words and Terms

Abdominal aortic aneurysm

is a localized dilatation of the abdominal aorta exceeding the normal diameter by more than 50 %.

Rupture

is the most common complication of AAA and one of the most fatal surgical emergencies; it has an overall mortality rate of approximately 90 %. Existing evidence indicates better overall outcome when repair of AAA is performed on elective basis compared to the emergency repair.

Endovascular aneurysm repair

(or endovascular aortic repair) (EVAR) is a type of endovascular surgery used to treat an abdominal aortic aneurysm The procedure involves the placement of an expandable stent graft within the aorta to treat aortic disease without operating directly on the aorta.

Endoleak

is a leak into the aneurysm sac after endovascular repair. There are five types of endoleaks.

Screening

for AAA would most benefit those who have a reasonably high probability of having an AAA that is large enough or will become large enough to benefit from surgery. Ultrasonography has a sensitivity of 95 % and specificity of nearly 100 % when performed in a setting of screening for AAA.

Molecular biomarker

can be defined as a detectable cell, protein, peptide, gene, or metabolic product that represents biologic processes that take place in an organism at a given time.

Elastase

is a protease associated with the breakdown of aortic elastin.

Cathepsins

are elastolytic enzymes that expressed strongly in the AAA wall and favor inflammation in AAA lesions by promoting microvascularization and smooth muscle cell apoptosis as well as leukocytes adhesion and proliferation.

Cystatin C

is an endogenous inhibitor of cysteine protease activity.

Matrix metalloproteinases (MMPs)

are zinc-dependent endopeptidases that are capable of degrading all kinds of extracellular matrix proteins, but also can process a number of bioactive molecules.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Moris, D., Athanasiou, A., Vernadakis, S., Georgopoulos, S. (2015). Biomarkers for Abdominal Aortic Aneurysm. In: Patel, V., Preedy, V. (eds) Biomarkers in Cardiovascular Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7741-5_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7741-5_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7741-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics