Skip to main content

Physical Principles of Spin Pumping

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Spintronics
  • 288 Accesses

Abstract

The spin pumping is a versatile method to create the spin current and spin accumulation in various conducting materials in hybrid nanostructures. In this chapter a theoretical description for spin pumping from a ferromagnet into a normal metal is presented based on the spin-exchange interaction between localized moments and conduction electrons in hybrid nanostructures. It is demonstrated that pure spin currents are generated by the coherent spin pumping due to ferromagnetic resonance and the thermal spin pumping due to the spin Seebeck effect. The inverse effect that the spin dynamics is manipulated by spin injection into a ferromagnet from a normal metal with strong spin-orbit coupling using the spin-Hall effect is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Maekawa S (ed) (2006) Concepts in spin electronics. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. Tsymbal E, Zutić I (eds) (2011) Handbook of spin transport and magnetism. CRC Press, Boca Raton

    Google Scholar 

  3. Žutić I, Fabian J, Das Sarma S (2004) Spintronics: Fundamentals and applications. Rev Mod Phys 76:323

    Article  ADS  Google Scholar 

  4. Maekawa S, Valenzuela SO, Saitoh E, Kimura T (eds) (2012) Spin current. Oxford University Press, Oxford

    Google Scholar 

  5. Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys Rev Lett 55:1790

    Article  ADS  Google Scholar 

  6. Johnson M (1993) Spin accumulation in gold films. Phys Rev Lett 70:2142

    Article  ADS  Google Scholar 

  7. Jedema FJ, Filip AT, van Wees BJ (2001) Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410:345

    Article  ADS  Google Scholar 

  8. Jedema FJ, Heersche HB, Filip AT, Baselmans JJA, van Wees BJ (2002) Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416:713

    Article  ADS  Google Scholar 

  9. Lou XH, Adelmann C, Crooker SA, Garlid ES, Zhang J, Reddy KSM, Flexner SD, Palmstrom CJ, Crowell PA (2007) Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat Phys 3:197

    Article  Google Scholar 

  10. Han W, McCreary KM, Pi K, Wang WH, Li Y, Wen H, Chen JR, Kawakami RK (2012) Spin transport and relaxation in graphene. J Magn Magn Mater 324:369

    Article  ADS  Google Scholar 

  11. Takahashi S, Maekawa S (2003) Spin injection and detection in magnetic nanostructures. Phys Rev B 67:052409

    Article  ADS  Google Scholar 

  12. Silsbee RH, Janossy A, Monod P (1979) Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic-normal-metal interface. Phys Rev B 19:4382

    Article  ADS  Google Scholar 

  13. Mizukami S, Ando Y, Miyazaki T (2002) Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys Rev B 66:104413

    Article  ADS  Google Scholar 

  14. Tserkovnyak Y, Brataas A, Bauer GEW (2002) Spin pumping and magnetization dynamics in metallic multilayers. Phys Rev Lett 88:117601

    Article  ADS  Google Scholar 

  15. Costache MV, Sladkov M, Watts SM, van der Wal CH, van Wees BJ (2006) Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Phys Rev Lett 97:216603

    Article  ADS  Google Scholar 

  16. Mosendz O, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys Rev Lett 104:046601

    Article  ADS  Google Scholar 

  17. Ando K, Takahashi S, Ieda J, Kurebayashi H, Trypiniotis T, Barnes CHW, Maekawa S, Saitoh E (2011) Electrically tunable spin injector free from the impedance mismatch problem. Nat Mater 10:655

    Article  ADS  Google Scholar 

  18. Kato YK, Myers RC, Gossard AC, Awschalom DD (2004) Observation of the spin Hall effect in semiconductors. Science 306:1910

    Article  ADS  Google Scholar 

  19. Wunderlich J, Kaestner B, Sinova J, Jungwirth T (2005) Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett 94:047204

    Article  ADS  Google Scholar 

  20. Valenzuela SO, Tinkham M (2006) Direct electronic measurement of the spin Hall effect. Nature 442:176

    Article  ADS  Google Scholar 

  21. Saitoh E, Ueda M, Miyajima H, Tatara G (2006) Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl Phys Lett 88:182509

    Article  ADS  Google Scholar 

  22. Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S (2007) Room-temperature reversible spin Hall effect. Phys Rev Lett 98:156601

    Article  ADS  Google Scholar 

  23. Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J, Takanasni K (2008) Giant spin Hall effect in a perpendicularly spin-polarized FePt/Au device. Nat Mater 7:125

    Article  ADS  Google Scholar 

  24. D’yakonov MI, Perel’ VI (1971) Current induced spin orientation of electrons in semiconductors. Phys Lett A 35:459

    Article  ADS  Google Scholar 

  25. Hirsch JE (1999) Spin Hall effect. Phys Rev Lett 83:1834

    Article  ADS  Google Scholar 

  26. Zhang S (2001) Spin Hall effect in the presence of spin diffusion. Phys Rev Lett 85:393

    Article  ADS  Google Scholar 

  27. Murakami S, Nagaosa N, Zhang SC (2003) Dissipationless quantum spin current at room temperature. Science 301:1348–1351

    Article  ADS  Google Scholar 

  28. Sinova J, Culcer D, Niu Q, Sinitsyn NA, Jungwirth T, MacDonald AH (2004) Universal intrinsic spin Hall effect. Phys Rev Lett 92:126603

    Article  ADS  Google Scholar 

  29. Takahashi S, Maekawa S (2002) Hall effect induced by a spin-polarized current in superconductors. Phys Rev Lett 88:116601

    Article  ADS  Google Scholar 

  30. Bauer GEW, Saitoh E, van Wees BJ (2012) Spin caloritronics. Nat Mater 11:391

    Article  ADS  Google Scholar 

  31. Adachi H, Uchida K, Saitoh E, Maekawa S (2013) Theory of the spin Seebeck effect. Rep Prog Phys 76:036501

    Article  ADS  Google Scholar 

  32. Tserkovnyak Y, Brataas A, Bauer GEW (2002) Spin pumping and magnetization dynamics in metallic multilayers. Phys Rev B 66:224403

    Article  ADS  Google Scholar 

  33. Tserkovnyak Y, Brataas A, Bauer GEW, Halperin BI (2005) Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev Mod Phys 77:1375

    Article  ADS  Google Scholar 

  34. Brataas A, Bauer GEW, Kelly PJ (2006) Non-collinear magnetoelectronics. Phys Rep 427:157

    Article  ADS  Google Scholar 

  35. Büttiker M, Thomas H, Prétre A (1994) Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Z Phys B 94:133

    Article  ADS  Google Scholar 

  36. Brouwer PW (1998) Scattering approach to parametric pumping. Phys Rev B 58:R10135

    Article  ADS  Google Scholar 

  37. Šimánek E, Heinrich B (2003) Gilbert damping in magnetic multilayers. Phys Rev B 67:144418

    Article  ADS  Google Scholar 

  38. Mills DL (2003) Ferromagnetic resonance relaxation in ultrathin metal films: The role of the conduction electrons. Phys Rev B 68:014419

    Article  ADS  Google Scholar 

  39. Zhang S, Li Z (2003) Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys Rev Lett 93:127204

    Article  ADS  Google Scholar 

  40. Takeuchi A, Hosono K, Tatara G (2010) Diffusive versus local spin currents in dynamic spin pumping systems. Phys Rev B 81:144405

    Article  ADS  Google Scholar 

  41. Yosida K (1998) Theory of magnetism. Springer, Berlin, p 228

    Google Scholar 

  42. Gilbert TL (1955) A Lagrangian formulation of the gyromagnetic equation of the magnetic field. Phys Rev 100:1243

    Google Scholar 

  43. Bloch F (1946) Nuclear induction. Phys Rev 70:460

    Article  ADS  Google Scholar 

  44. Torrey HC (1956) Bloch equations with diffusion terms. Phys Rev 104:563

    Article  ADS  Google Scholar 

  45. Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R, Bauer GEW (2003) Dynamic exchange coupling in magnetic bilayers. Phys Rev Lett 90:187601

    Article  ADS  Google Scholar 

  46. Takahashi S (2014) Giant enhancement of spin pumping in the out-of-phase precession mode. Appl Phys Lett 104:052407

    Article  ADS  Google Scholar 

  47. Mizukami S, Ando Y, Miyazaki T (2001) The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) films. Jpn J Appl Phys 40:580

    Article  ADS  Google Scholar 

  48. Azevedo A, Vilela-Leao LH, Rodriguez-Suarez RL, Santos AFL, Rezende SM (2011) Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: Theory and experiment. Phys Rev B 83:144402

    Article  ADS  Google Scholar 

  49. Nakayama H, Ando K, Harii K, Yoshino T, Takahashi R, Kajiwara Y, Uchida K, Fujikawa Y, Saitoh E (2012) Geometry dependence on inverse spin Hall effect induced by spin pumping in Ni_{81}Fe_{19}/Pt films. Phys Rev B 85:144408

    Article  ADS  Google Scholar 

  50. Czeschka FD, Dreher L, Brandt MS, Weiler M, Althammer M, Imort IM, Reiss G, Thomas A, Schoch W, Limmer W, Huebl H, Gross R, Goennenwein STB (2011) Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. Phys Rev Lett 107:046601

    Article  ADS  Google Scholar 

  51. Takahashi S, Saitoh E, Maekawa S (2010) Spin current through a normal-metal/insulating-ferromagnet junction. J Phys Conf Ser 200:062030

    Article  ADS  Google Scholar 

  52. Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E (2010) Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464:262

    Article  ADS  Google Scholar 

  53. Kajiwara Y, Takahashi S, Maekawa S, Saitoh E (2011) Detection of spin-wave spin current in a magnetic insulator. IEEE Trans Magn 47:1591

    Article  ADS  Google Scholar 

  54. Castel V, Vlietstra N, Youssef JB, van Wees BJ (2012) Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system. Appl Phys Lett 101:132414

    Article  ADS  Google Scholar 

  55. Weiler M, Althammer M, Schreier M, Lotze J, Pernpeintner M, Meyer S, Huebl H, Gross R, Kamra A, Xiao J, Chen YT, Jiao H, Bauer GEW, Goennenwein STB (2013) Experimental test of the spin mixing interface conductivity concept. Phys Rev Lett 111:176601

    Article  ADS  Google Scholar 

  56. Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song YY, Sun Y, Wu M (2011) Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces. Phys Rev Lett 107:066604

    Article  ADS  Google Scholar 

  57. Jia X, Liu K, Xia K, Bauer GEW (2011) Spin transfer torque on magnetic insulators. Eur Phys Lett 96:17005

    Article  ADS  Google Scholar 

  58. Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E (2008) Electric manipulation of spin relaxation using the spin Hall effect. Phys Rev Lett 101:036601

    Article  ADS  Google Scholar 

  59. Liu L, Moriyama T, Ralph DC, Buhrman RA (2011) Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys Rev Lett 106:036601

    Article  ADS  Google Scholar 

  60. Kondou K, Sukegawa H, Mitani S, Tsukagoshi K, Kasai S (2012) Evaluation of spin Hall angle and spin diffusion length by using spin current-induced ferromagnetic resonance. Appl Phys Express 5:073002

    Article  ADS  Google Scholar 

  61. Liu L, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA (2012) Spin-torque switching with the giant spin Hall effect of Tantalum. Science 336:555

    Article  ADS  Google Scholar 

  62. Slonczewski JC (1996) Current-driven excitation of magnetic multilayers. J Magn Magn Mater 159:L1

    Article  ADS  Google Scholar 

  63. Petit S, Baraduc C, Thirion C, Ebels U, Liu Y, Li M, Wang P, Dieny B (2007) Spin-torque influence on the high-frequency magnetization fluctuations in magnetic tunnel junctions. Phys Rev Lett 98:077203

    Article  ADS  Google Scholar 

  64. Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E (2011) Inverse spin-Hall effect induced by spin pumping in metallic system. J Appl Phys 109:103913

    Article  ADS  Google Scholar 

  65. Mosendz O, Vlaminck V, Pearson JE, Fradin FY, Bauer GEW, Bader SD, Hoffmann A (2010) Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys Rev B 82:214403

    Article  ADS  Google Scholar 

  66. Valet T, Fert A (1993) Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys Rev B 48:7099

    Article  ADS  Google Scholar 

  67. Takahashi S, Imamura H, Maekawa S (2006) Spin injection and spin transport in hybrid nanostructures. In: Maekawa S (ed) Concept in spin electronics. Oxford University Press, Oxford

    Google Scholar 

  68. Takahashi S, Maekawa S (2008) Spin current in metals and superconductors. J Phys Soc Jpn 77:031009

    Article  ADS  Google Scholar 

  69. Takahashi S, Maekawa S (2008) Spin current, spin accumulation and spin Hall effect. Sci Technol Adv Mater 9:014105

    Article  Google Scholar 

  70. Takahashi S, Maekawa S (2011) Spin transport in hybrid nanostructures. In: Tsymbal E, Zutić I (eds) Handbook of spin transport and magnetism. CRC Press, Boca Raton

    Google Scholar 

  71. Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E (2008) Observation of the spin Seebeck effect. Nature 455:778

    Article  ADS  Google Scholar 

  72. Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer GEW, Maekawa S, Saitoh E (2010) Spin Seebeck insulator. Nat Mater 9:894

    Article  ADS  Google Scholar 

  73. Jaworski CM, Yang J, Mack S, Awschalom DD, Heremans JP, Myers RC (2010) Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat Mater 9:898

    Article  ADS  Google Scholar 

  74. Kirihara A, Uchida K, Kajiwara Y, Ishida M, Nakamura Y, Manako T, Saitoh E, Yorozu S (2011) Spin-current-driven thermoelectric coating. Nat Mater 11:686

    Article  ADS  Google Scholar 

  75. Wang Z, Sun Y, Wu M, Tiberkevich V, Slavin A (2011) Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys Rev Lett 107:146602

    Article  ADS  Google Scholar 

  76. Mahan GD (2000) Many particle physics. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  77. Rammer J (2004) Quantum transport theory. Westview Press, Boulder, p 305

    Google Scholar 

  78. Sanders DJ, Watson D (1977) Effect of magnon-phonon thermal relaxation on heat transport by magnons. Phys Rev B 15:1489

    Article  ADS  Google Scholar 

  79. Xiao J, Bauer GEW, Uchida K, Saitoh E, Maekawa S (2010) Theory of magnon-driven spin Seebeck effect. Phys Rev B 81:214418

    Article  ADS  Google Scholar 

  80. Adachi H, Ohe J, Takahashi S, Maekawa S (2011) Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Phys Rev B 83:094410

    Article  ADS  Google Scholar 

  81. Ohe J, Adachi H, Takahashi S, Maekawa S (2011) Numerical study on the spin Seebeck effect. Phys Rev B 83:115118

    Article  ADS  Google Scholar 

  82. Lu L, Sun Y, Jantz M, Wu M (2012) Control of ferromagnetic relaxation in magnetic thin films through thermally induced interfacial spin transfer. Phys Rev Lett 108:257202

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saburo Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Takahashi, S. (2016). Physical Principles of Spin Pumping. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7604-3_51-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7604-3_51-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7604-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Physical Principles of Spin Pumping
    Published:
    01 April 2016

    DOI: https://doi.org/10.1007/978-94-007-7604-3_51-2

  2. Original

    Physical Principles of Spin Pumping
    Published:
    28 February 2015

    DOI: https://doi.org/10.1007/978-94-007-7604-3_51-1