Skip to main content

Earth Observation Methods for Wetlands: Overview

  • Living reference work entry
  • First Online:
The Wetland Book
  • 119 Accesses

Abstract

At local to global scales, wetlands can be observed, characterized, mapped, and monitored using a diverse range of ground, airborne, and spaceborne sensors operating in different modes and across different spatial and temporal scales. Sensors that are generally more familiar to those involved with wetlands assessment operate in the spectral (reflected visible to shortwave infrared) regions of the electromagnetic spectrum, with these allowing identification of open water, determination of water state and quality, discrimination of different aquatic environments and vegetation types, and tracking of vegetation phenology and water dynamics. Sensors operating in the thermal regions provide information on the temperature variations of wetlands and particularly the water surface. Microwave sensors (on the order of cm wavelength) typically facilitate the mapping of open water and inundation and also provide information on the three-dimensional structure of wetland vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alsdorf DE, Rodriguez E, Lettenmaier DP. Measuring surface water from space. Rev Geophys. 2007;45(2):RG2002.

    Article  Google Scholar 

  • Bartsch A, Wagner W, Scipal K, Pathe C, Sabel D, Wolski P. Global monitoring of wetlands – the value of ENVISAT ASAR global mode. J Environ Manage. 2009;90:2226–33.

    Article  CAS  PubMed  Google Scholar 

  • Cook BD, Bolstad PV, Naesset E, Anderson RS, Garrigues S, Morisette JT, Nikeson J, Davis KJ. Using lidar and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalisations. Remote Sens Environ. 2009;113:2366–79.

    Article  Google Scholar 

  • Costa MPF, Telmer KH. Utilizing SAR imagery and aquatic vegetation to map fresh and brackish lakes in the Brazilian Pantanal wetland. Remote Sens Environ. 2006;105:204–13.

    Article  Google Scholar 

  • Dekker AG, Brando VE, Anstee JM. Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ. 2005;97:415–33.

    Article  Google Scholar 

  • Di Gregorio A, Jansen LJM. Land cover classification system (LCCS): classification concepts and user manual for software version 1.0. Rome: Food and Agricultural Organisation (FAO); 2000.

    Google Scholar 

  • Dillabaugh KA, King DJ. Riparian marshland composition and biomass mapping using IKONOS imagery. Can J Remote Sens. 2008;34(2):143–58.

    Article  Google Scholar 

  • Dozier J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens Environ. 1989;28:9–22.

    Article  Google Scholar 

  • Giri G, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. Status and distribution of Mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr. 2011;20(1):154–9.

    Article  Google Scholar 

  • Hess LL, Melack JM, Filoso S, Yong W. Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens. 1995;33:896–904.

    Article  Google Scholar 

  • Hess LL, Melack JM, Novo EMLM, Barbosa C, Gastil M. Dual–season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ. 2003;87:404–28.

    Article  Google Scholar 

  • Hoekman DH. Satellite radar observation of tropical peat swamp forest as a tool for hydrological modeling and environmental protection. Aquat Conserv Mar Freshw Ecosyst. 2007;17:265–75.

    Article  Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen J, Martikainen P, Vasander H. Carbon fluxes from a tropical peat swamp forest floor. Glob Chang Biol. 2005;11:1788–97.

    Article  Google Scholar 

  • Jensen AM, Hardy T, McKee M, Yang QC. Using a multispectral autonomous unmanned aerial remote sensing platform (AggieAir) for riparian and wetlands application. Geoscience and Remote Sensing Symposium (IGARSS); 2011. p. 2413–3416.

    Google Scholar 

  • Jones K, Lanthier Y, van der Voet P, van Valkengoed E, Taylor D, Fernandez-Prieto D. Monitoring and assessment of wetlands using earth observation: the GlobWetland project. J Environ Manage. 2009;90:2154–69.

    Article  PubMed  Google Scholar 

  • Laba M, Downs R, Smith S, Welsh S, Neider C, White S, Richmond M, Philpot W, Baveye P. Mapping invasive wetland plans in the Hudson River National Estuary Research Reserve using Quickbird satellite imagery. Remote Sens Environ. 2008;112:286–300.

    Article  Google Scholar 

  • Liu K, Li X, Shi X, Wang S. Monitoring mangrove forest changes using remote sensing and GIS data with decision tree learning. Wetlands. 2008;28:336–46.

    Article  CAS  Google Scholar 

  • Lucas RM, Mitchell A, Donnelly B, Milne AK, Ellison J, Finlaysson M. Use of stereo aerial photography for assessing changes in the extent and height of mangrove canopies in tropical Australia. Wetl Ecol Manag. 2002;10:161–75.

    Article  Google Scholar 

  • Lucas RM, Blonda P, Bunting P, Jones G, Inglada J, Aria M, Kosmidou V, Petrou ZI, Manakos I, Adamo M, Charnock R, Tarantino C, Mücher CA, Jongman R, Kramer H, Arvor D, Honrado JP, Mairota P. The earth observation data for habitat monitoring (EODHAM) system. Int J Appl Earth Obs Geoinf. 2014a:17–28.

    Google Scholar 

  • Lucas RM, Rebelo L, Fatoyinbo L, Rosenqvist A, Itoh T, Shimada M, Simard M, Souza-Filho PW, Thomas N, Trettin C, Accad A, Carreiras J, Hilarides L. Contribution of L-band SAR to systematic global mangrove monitoring. Freshw Mar Sci. 2014b;65:589–603.

    Article  Google Scholar 

  • Magumba D, Maruyama A, Kato A, Takagaki M, Kikuchi M. Spatio-temporal changes in wetlands and identification of Cyperus papyrus on the northern shore of Lake Victoria. Trop Agric Dev. 2014;58:1–7.

    Google Scholar 

  • Markham BL, Helder DL. Forty-year calibrated record of earth-reflected radiance from Landsat: a review. Remote Sens Environ. 2012;122:30–40.

    Article  Google Scholar 

  • Mayaux P, De Grandi GF, Rauste Y, Simard M, Saatchi S. Large scale vegetation maps derived from the combined L-band GRFM and C-band CAMP wide area radar mosaics of Central Africa. Int J Remote Sens. 2002;23:1261–82.

    Article  Google Scholar 

  • Melack JM, Hess LL. Remote sensing of the distribution and extent of wetlands in the Amazon Basin. Ecol Stud (Amazonian Floodplain Forests). 2010;210:43–59.

    Google Scholar 

  • Milne AK, Tapley IJ. Mapping and assessment of wetland ecosystems in north-western Tonle Sap Great Lake with AIRSAR data: results of a pilot study funded jointly by the Mekong River Commision and the University of New South Wales; 2004. p. 129.

    Google Scholar 

  • Montefalcone M, Rovere A, Parravicini V, Albertelli G, Morri C, Bianchi CN. Evaluating change in seagrass meadows: a time-framed comparison of side scan sonar maps. Aquat Bot. 2013;104:204–12.

    Article  Google Scholar 

  • Moser L, Voigt S, Schoepfer E, Palmer S. Multi-temporal wetland monitoring in Sub-Saharan West Africa using medium resolution optical satellite data. IEEE J Sel Top Appl Earth Obs Remote Sens. 2014;99.

    Google Scholar 

  • Murray NJ, Phinn SR, Clemens SR, Roelfsema CM, Fuller RA. Continental scale mapping of tidal flats across east Asia using the Landsat archive. Remote Sens. 2012;4(11):3417–26.

    Article  Google Scholar 

  • Ozesmi SL, Bauer ME. Satellite remote sensing of wetlands. Wetl Ecol Manag. 2002;10:381–402.

    Article  Google Scholar 

  • Paganini M, Weise K, Fitoka E, Hansen H, Fernandez–Prieto D, Arino O. The DUE Globwetland-2 project. Proceedings of the 2010 Living Planet Symposium, Bergen, Norway; 2010.

    Google Scholar 

  • Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J. Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ. 2008;112:3413–25.

    Article  Google Scholar 

  • Potter C, Melack J, Engle D. Modeling methane emissions from Amazon floodplain ecosystems. Wetlands. 2014;34:501–11.

    Article  Google Scholar 

  • Richey JE, Wilhelm SR, McClain ME, Victoria RL, Melack JM, Araujo-Limo C. Organic matter and nutrient dynamics in river corridors of the Amazon Basin and their response to anthropogenic change. Geophys Res. 1997;97:3787–804.

    Google Scholar 

  • Rosenqvist A. Temporal and spatial characteristics of irrigated rice in JERS-1 L-band SAR data. Int J Remote Sens. 1999;20:1567–87.

    Article  Google Scholar 

  • Rosenqvist A, Shimada M, Milne AK. The ALOS kyoto and carbon initiative. Geosci Remote Sens Symp. 2007;3614–7.

    Google Scholar 

  • Salari A, Zakaria M, Nielson CC, Boyce MS. Quantifying tropical wetlands using field surveys, spatial statistics and remote sensing. Wetlands. 2014;34:565–74.

    Article  Google Scholar 

  • Shaikh M, Green D, Cross H. A remote sensing approach to determine environmental flows for wetlands of the Lower Darling River, New South Wales, Australia. Int J Remote Sens. 2010;22:1737–51.

    Article  Google Scholar 

  • Silva TSF, Costa MPF, Melack JM, Novo EMLM. Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess. 2008;140:131–45.

    Article  PubMed  Google Scholar 

  • Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR. A systematic method for 3d mapping of mangrove forests based on shuttle radar topography mission elevation data, ICESat/GLAS waveforms and field data: application to Cienaga Grande De Santa Marta, Colombia. Remote Sens Environ. 2008;112:2131–44.

    Article  Google Scholar 

  • Spalding M, Kainuma M, Collins L. World atlas of mangroves. 2nd ed. London: Earthscan; 2010. p. 336.

    Google Scholar 

  • Stumpf RP, Goldschmidt PM. Remote sensing of suspended sediment discharge into the Western Gulf of Maine during the April 1987 100-year flood. J Coast Res. 1992;8:218–25.

    Google Scholar 

  • Takeuchi W, Tamura M, Yasuoka Y. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV. Remote Sens Environ. 2003;85(1):21–9.

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebuv MN. A comparative assessment between object- and pixel-based classification approaches for land use/land cover mapping using SPOT-5 imagery. Geocarto Int. 2014;29:351–69.

    Article  Google Scholar 

  • Thomas N, Lucas RM, Itoh T, Simard M, Fatoyinbo L, Bunting P, Rosenqvist A. An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data. Wetl Ecol Manag. 2015;23(1):3–17.

    Article  Google Scholar 

  • Whitcomb J, Moghaddam M, McDonald K, Kellndorfer J, Podest E. Mapping vegetated wetlands of Alaska using L-band radar satellite imagery. Can J Remote Sens. 2014;35:54–72.

    Article  Google Scholar 

  • Williams DL, Goward S, Arvidson T. Landsat: yesterday, today and tomorrow. Photogramm Eng Remote Sens. 2006;72(10):1171–8.

    Article  Google Scholar 

  • Xiao X, Boles S, Liu J, Shuang D, Frolking S, Li C, Salas W, Moore B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ. 2005;95:480–92.

    Article  Google Scholar 

  • Yan Y, Ouyang Z, Guo H, Jin S, Zhao B. Detecting the spatiotemporal changes of tidal flood in the estuarine wetland by using MODIS time series data. J Hydrol. 2010;384(102):156–63.

    Article  Google Scholar 

  • Zhang B, Li J, Shen Q, Chen D. A bio-optical model based method of estimating total suspended matter of Lake Taihu (China) from near infrared remote sensing reflectance. Environ Monit Assess. 2008;145:339–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lucas, R. (2016). Earth Observation Methods for Wetlands: Overview. In: Finlayson, C., et al. The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6172-8_314-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6172-8_314-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6172-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics