Skip to main content

Polymer Materials: Wet Processing

  • Living reference work entry
  • First Online:
Handbook of Organic Light-Emitting Diodes
  • 102 Accesses

Abstract

The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi C (2013) Oyo Butsuri 82:458

    Google Scholar 

  • Bernius M, Inbasekaran M, O’Brien J, Wu W (2000a) Progress with Light-Emitting Polymers. Adv Mater 12:1737

    Google Scholar 

  • Bernius M, Inbasekaran M, Woo E, Wu W, Wujkowski L (2000b) Fluorene-based polymers-preparation and applications. J Mater Sci Mater Electron 11:111

    Google Scholar 

  • Bernius M, Inbasekaran M, Woo E, Wu W, Wujkowski L (2000c) Light-emitting diodes based on fluorene polymers. Thin Solid Films 363:55

    Google Scholar 

  • Bohm E et al (2011) SID-ME spring meeting

    Google Scholar 

  • Burn PL, Victor C, Lo S-C, Pillow J, Gerard N, Mark LJ, Samuel IDW (2002) Metal-containing Dendrimers. WO02/66552

    Google Scholar 

  • Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 345:539

    Google Scholar 

  • Ego C, Grimsdale AC, Uckert F, Yu G, Srdanov G, Inbasekaran M, Woo E (2002) Triphenylamine-Substituted Polyfluorene–A Stable Blue-Emitter with Improved Charge Injection for Light-Emitting Diodes. Adv Mater 14:809

    Google Scholar 

  • Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C (2009) Thermally Activated Delayed Fluorescence from Sn4+–Porphyrin Complexes and Their Application to Organic Light Emitting Diodes – A Novel Mechanism for Electroluminescence. Adv Mater 21:4802

    Google Scholar 

  • Frampton MJ, Namdas EB, Lo SC, Burn PL, Samuel IDW (2004) The synthesis and properties of solution processable red-emitting phosphorescent dendrimer. J Mater Chem 14:2881

    Google Scholar 

  • Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB (1993) Efficient light-emitting diodes based on polymers with high electron affinities. Nature 365:628

    Google Scholar 

  • Grem G, Leditzky G, Ullrich B, Leising B (1992) Realization of a blue-light-emitting device using poly(p-phenylene). Adv Mater 4:36

    Google Scholar 

  • Guo X, Baumgarten M, Müllen K (2013) Designing π-conjugated polymers for organic electronics. Prog Polym Sci 38:1832

    Google Scholar 

  • Gupta A, Watkins SE, Scully AD, Singh TB, Wilson GJ, Rozanski LJ, Evans RA (2011) Band-gap tuning of pendant polymers for organic light-emitting devices and photovoltaic applications. Synth Met 161:856

    Google Scholar 

  • Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaner N, Heeger AJ (1992) Flexible light-emitting diodes made from soluble conducting polymers. Nature 357:477

    Google Scholar 

  • He G, Li Y, Liu J, Yang Y (2002) Enhanced electroluminescence using polystyrene as a matrix. Appl Phys Lett 80:4247

    Google Scholar 

  • Hou Q, Zhou Q, Zhang Y, Yang W, Yang R, Cao Y (2004) Synthesis and Electroluminescent Properties of High-Efficiency Saturated Red Emitter Based on Copolymers from Fluorene and 4,7-Di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole. Macromolecules 37:6299

    Google Scholar 

  • Huang J et al (2009) Electroluminescence and Laser Emission of Soluble Pure Red Fluorescent Molecular Glasses Based on Dithienylbenzothiadiazole. Adv Funct Mater 19:2978

    Google Scholar 

  • Inbasekaran M, Woo E, Bernius M, Wujkowski L (2000) Fluorene homopolymers and copolymers. Synth Met 111–112:397

    Google Scholar 

  • Kim JS, Friend RH, Grizzi I, Burroughes JH (2005) Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes. Appl Phys Lett 87:023506

    Google Scholar 

  • Kim K, Doherty W, Salaneck W, Murphy C, Friend R, Kim J (2010) Phase-Separated Thin Film Structures for Efficient Polymer Blend Light-Emitting Diodes. Nano Lett 10:385

    Google Scholar 

  • King SM, Cass M, Pintani M, Coward C, Dias FB, Monkman AP, Roberts M (2011) The contribution of triplet–triplet annihilation to the lifetime and efficiency of fluorescent polymer organic light emitting diodes. J Appl Phys 109:074502

    Google Scholar 

  • Kondakov DY, Pawlik TD, Hatwar TK, Spindler JP (2009) Triplet annihilation exceeding spin statistical limit in highly efficient organic light-emitting diodes. J Appl Phys 106:124510

    Google Scholar 

  • Kuma H (2008) The 7th Yuki EL Toronkai S9-1

    Google Scholar 

  • Lee JH, Hwang DH (2003) Alkoxyphenyl-substituted polyfluorene: a stable blue-light-emitting polymer with good solution processability. Chem. Comm. 2836 203

    Google Scholar 

  • Lee C, Lee K, Kim J (2000) Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter. Appl Phys Lett 77:2280

    Google Scholar 

  • Liu J, Pei Q (2010a) Electrophosphorescent Polymers for High-Efficiency Light-Emitting Diodes. Curr Org Chem 14:2133

    Google Scholar 

  • Liu J, Pei Q (2010b) Poly(m-phenylene): Conjugated Polymer Host with High Triplet Energy for Efficient Blue Electrophosphorescence. Macromolecules 43:9608

    Google Scholar 

  • Lo SC, Anthopoulos TD, Namdas EB, Burn PL, Samuel IDW (2005) Encapsulated Cores: Host-Free Organic Light-Emitting Diodes Based on Solution-Processible Electrophosphorescent Dendrimers. Adv Mater 17:1945

    Google Scholar 

  • Lo SC, Harding RE, Shipley CP, Stevenson SG, Burn PL, Samuel IDW (2009) High-Triplet-Energy Dendrons: Enhancing the Luminescence of Deep Blue Phosphorescent Iridium(III) Complexes. J Am Chem Soc 131:16681

    Google Scholar 

  • Miteva T, Meisel A, Knoll W, Northofer HG, Scherf U, Müller DC, Meertholz K, Yasuda A, Neher D (2001) Improving the Performance of Polyfluorene-Based Organic Light-Emitting Diodes via End-capping. Adv Mater 13:565

    Google Scholar 

  • Monkman AP (2013) Singlet Generation from Triplet Excitons in Fluorescent Organic Light-Emitting Diodes. ISRN Mater Sci 19:670130

    Google Scholar 

  • Mori Y, Endo H, Hayashi Y (1992) Oyo Butsiri 61:1044

    Google Scholar 

  • Morteani AC, Dhoot AS, Kim J-S, Silva C, Greenham NC, Murphy C, Moons E, Ciná S, Burroughes JH, Friend RH (2003) Barrier-Free Electron–Hole Capture in Polymer Blend Heterojunction Light-Emitting Diodes. Adv Mater 15:1708

    Google Scholar 

  • Motomura (2009) The 9th Yuki EL Toronkai S4-2

    Google Scholar 

  • Motomura (2010) The 10th Yuki EL Toronkai S2-2

    Google Scholar 

  • Nasu K, Nakagawa T, Nomura H, Lin CJ, Cheng CH, Tseng MR, Yasuda T, Adachi C (2013) A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence. Chem Commun 49:10385

    Google Scholar 

  • Ohmiri Y (2007) Oyo Butsuri 76:522

    Google Scholar 

  • Ohnishi T, Nakano T, Doi D, Noguchi T (1991) Tokukaihei 3-244630

    Google Scholar 

  • Partrige RH (1983a) Electroluminescence from polyvinylcarbazole films: 1. Carbazole cations. Polymer 24:733

    Google Scholar 

  • Partrige RH (1983b) Electroluminescence from polyvinylcarbazole films: 4. Electroluminescence using higher work function cathodes. Polymer 24:755

    Google Scholar 

  • Pollow J, Liu Z, Sekine C, Mikami S, Mayumi M (2005) 22.4: Progress of Red Phosphorescent Dendrimer OLEDs. SID’05 Digest 1071

    Google Scholar 

  • Roberts M, King S, Cass M, Pintani M, Coward C, Akino N, Nakajima H, Anryu M (2011) 56.1: Invited Paper: Excited State Interactions in P-OLEDs: Implications For Efficiency And Lifetime. SID Sym Digest Tech Pap 42:1820

    Google Scholar 

  • Takizawa S, Nishida J, Tsuzuki T, Tokito S, Yamashita Y (2007) Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-a]pyridine Ligands: Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices. Inorg Chem 46:4308

    Google Scholar 

  • Tanaka H, Shizu K, Nakanotani H, Adachi C (2013) Twisted Intramolecular Charge Transfer State for Long-Wavelength Thermally Activated Delayed Fluorescence. Chem Mater 25:3766

    Google Scholar 

  • Tang CW, VanSlyke SA, Chen CH (1989) Electroluminescence of doped organic thin films. J Appl Phys 65:3610

    Google Scholar 

  • Tekoglu S, Hernandez-Sosa G, Kluge E, Lemmer U, Mechau N (2013) Gravure printed flexible small-molecule organic light emitting diodes. Org Electron 14:3493

    Google Scholar 

  • Tokito S, Weinfurtner KH, Fujikawa H, Taga Y (2000) Gekkan Display 6:26

    Google Scholar 

  • Tokito S, Suzuki M, Sato F, Kmamachi M, Shirane K (2003) High-efficiency phosphorescent polymer light-emitting devices. Org Electron 4:105

    Google Scholar 

  • Tokito S, Adachi C, Murata H (2004) Organic EL displays, 21. Ohm-sha

    Google Scholar 

  • Tsutsui T, Takata N (2013) Jan J. Appl. Phys. 110001

    Google Scholar 

  • Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:235

    Google Scholar 

  • Vak D, Chun C, Lee CL, Kim JJ, Kim DY (2004) A novel spiro-functionalized polyfluorene derivative with solubilizing side chains. Mater Chem 14:1342

    Google Scholar 

  • Wang X-Y, Kimyonok A, Weck M (2006) Functionalization of polymers with phosphorescent iridium complexes via click chemistry. Chem Commun 37:3933

    Google Scholar 

  • Wu W et al (2004) Recent development of polyfluorene-based RGB materials for light emitting diodes. Microelectron J 35:343

    Google Scholar 

  • Wu S, Aonuma M, Zhang Q, Huang S, Nakagawa T, Kuwabara K, Adachi C (2014) High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter. J Mater Chem C 2:421

    Google Scholar 

  • Yamada T, Tsubata Y, Sekine C, Ohnishi T (2008) 29.1: Invited Paper: Recent Progress in Light-Emitting Polymers for Full Color OLEDs. SID Sym Digest Tech Pap 39:404

    Google Scholar 

  • Zhang Q, Li J, Shizu K, Huang S, Harata S, Miyazaki H, Adachi C (2012) Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. J Am Chem Soc 134:14706

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Yamada .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Japan KK, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamada, T. (2021). Polymer Materials: Wet Processing. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55761-6_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55761-6_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55761-6

  • Online ISBN: 978-4-431-55761-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics