Skip to main content

Physics and Design Principles of OLED Devices

  • Living reference work entry
  • First Online:
Handbook of Organic Light-Emitting Diodes

Abstract

The previous chapters have set the foundation for understanding the underlying physics of organic semiconductors and the basic operation and characteristics of OLEDs. This chapter brings all of these concepts together and covers the main electronic processes occurring in complete devices and the important considerations for designing efficient devices. First, the role of different layers in bringing charges together in a balanced manner is discussed. Next, the conditions needed to achieve efficient charge recombination to form excitons and confine the excitons to the light-emitting materials are covered. Materials and device considerations for efficient light emission based on fluorescence, phosphorescence, and thermally-activated delayed fluorescence, the three primarily employed processes, are discussed along with a few other processes that are being explored for efficient emission. Finally, we turn our attention to considerations such as light outcoupling and alternative device structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi C (2014) Third-generation organic electroluminescence materials. Jpn J Appl Phys 53:060101

    ADS  Google Scholar 

  • Adachi C, Tsutsui T (2004) Molecular LED: design concept of molecular materials for high-performance OLED. In: Shinar J (ed) Organic light-emitting devices: a survey, 1st edn. Springer, New York, pp 43–69

    Google Scholar 

  • Adachi C, Baldo MA, Forrest SR (2000) Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. J Appl Phys 87:8049–8055

    ADS  Google Scholar 

  • Adachi C, Baldo MA, Thompson ME, Forrest SR (2001) Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J Appl Phys 90:5048–5051

    ADS  Google Scholar 

  • Adamovich VI, Cordero SR, Djurovich PI, Tamayo A, Thompson ME, D’Andrade BW, Forrest SR (2003) New charge-carrier blocking materials for high efficiency OLEDs. Org Electron 4:77–87

    Google Scholar 

  • Aguirre CM, Auvray S, Pigeon S, Izquierdo R, Desjardins P, Martel R (2006) Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett 88:183104

    ADS  Google Scholar 

  • Amos R, Barnes WL (1997) Modification of the spontaneous rate of Eu3+ ions close to a thin metal mirror. Phys Rev B 55:7249–7254

    ADS  Google Scholar 

  • Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    ADS  Google Scholar 

  • Baldo MA, Adachi C, Forrest SR (2000a) Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys Rev B 62:10967–10977

    ADS  Google Scholar 

  • Baldo MA, Thompson ME, Forrest SR (2000b) High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 403:750–753

    ADS  Google Scholar 

  • Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699

    ADS  Google Scholar 

  • Berggren M, Gustafsson G, Inganas O, Andersson MR, Hjertberg T, Wennerstrom O (1994) White light from an electroluminescent diode made from poly[3(4-octylphenyl)-2,2′-bithiophene] and an oxadiazole derivative. J Appl Phys 76:7530–7534

    ADS  Google Scholar 

  • Bertram D, Born M, Jüstel T (2007) Incoherent light sources. In: Träger F (ed) Springer handbook of lasers and optics, 1st edn. Springer, New York, pp 565–582

    Google Scholar 

  • Brütting W (2005) Introduction to the physics of organic semiconductors. In: Brütting W (ed) Physics of organic semiconductors, 1st edn. Wiley-VCH, Weinheim, pp 1–14

    Google Scholar 

  • Brütting W, Frischeisen J, Schmidt TD, Scholz BJ, Mayr C (2013) Device efficiency of organic light-emitting diodes: progress by improved light outcoupling. Phys Status Solidi 210:44–65

    ADS  Google Scholar 

  • Bulović V, Tian P, Burrows PE, Gokhale MR, Forrest SR, Thompson ME (1997) A surface-emitting vacuum-deposited organic light emitting device. Appl Phys Lett 70:2954

    ADS  Google Scholar 

  • Bulović V, Khalfin CB, Gu G, Burrows PE, Garbuzov DZ, Forrest SR (1998) Weak microcavity effects in organic light-emitting devices. Phys Rev B 58:3730–3740

    ADS  Google Scholar 

  • Burn PL, Lo SC, Samuel IDW (2007) The development of light-emitting dendrimers for displays. Adv Mater 19:1675–1688

    Google Scholar 

  • Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541

    ADS  Google Scholar 

  • Chance RR, Prock A, Silbey R (1974) Lifetime of an emitting molecule near a partially reflecting surface. J Phys Chem 60:2744–2748

    Google Scholar 

  • Chang YJ, Chow TJ (2011) Highly efficient red fluorescent dyes for organic light-emitting diodes. J Mater Chem 21:3091–3099

    Google Scholar 

  • Chang JH, Lin WH, Wang PC, Taur JI, Ku TA, Chen WT, Yan SJ, Wu CI (2015) Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Sci Rep 5:9693

    Google Scholar 

  • Chaskar A, Chen H-F, Wong KT (2011) Bipolar host materials: a chemical approach for highly efficient electrophosphorescent devices. Adv Mater 23:3876–3895

    Google Scholar 

  • Chen SY, Chu TY, Chen JF, Su CY, Chen CH (2006) Stable inverted bottom-emitting organic electroluminescent devices with molecular doping and morphology improvement. Appl Phys Lett 89:053518

    ADS  Google Scholar 

  • Chen J, Zhao F, Ma D (2014) Hybrid white OLEDs with fluorophors and phosphors. Mater Today 17:175–183

    Google Scholar 

  • Chiang CJ, Kimyonok A, Etherington MK, Griffiths GC, Jankus V, Turksoy F, Monkman AP (2013) Ultrahigh efficiency fluorescent single and bi-layer organic light-emitting diodes: the key-role of triplet fusion. Adv Funct Mater 23:739–746

    Google Scholar 

  • Chou PY, Chou HH, Chen YH, Su TH, Liao CY, Lin HW, Lin WC, Yen HY, Chen IC, Cheng CH (2014) Efficient delayed fluorescence via triplet-triplet annihilation for deep-blue electroluminescence. Chem Commun 50:6869–6871

    Google Scholar 

  • Christogiannis N, Somaschi N, Micchetti P, Coles DM, Savvidis PG, Lagoudakis PG, Lidzey DG (2013) Characterizing the electroluminescence emission from a strongly-coupled organic semiconductor microcavity LED. Adv Opt Mater 1:503–509

    Google Scholar 

  • Chu TY, Chen JF, Chen SY, Chen CJ, Chen CH (2006) Highly efficient and stable inverted bottom-emission organic light emitting devices. Appl Phys Lett 89:053503

    ADS  Google Scholar 

  • Crawford OH (1988) Radiation from oscillating dipoles embedded in a layered system. J Chem Phys 89:6017–6027

    ADS  Google Scholar 

  • Cui LS, Ruan SB, Bencheikh F, Nagata R, Zhang L, Inada K, Nakanotani H, Liao LS, Adachi C (2017) Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts. Nat Commun 8:2250

    ADS  Google Scholar 

  • D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid-state lighting. Adv Mater 16:1585–1595

    Google Scholar 

  • D’Andrade BW, Baldo MA, Adachi C, Brooks J, Thompson ME, Forrest SR (2001) High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence. Appl Phys Lett 79:1045–1047

    ADS  Google Scholar 

  • D’Andrade BW, Thompson ME, Forrest SR (2002) Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices. Adv Mater 14:147–151

    Google Scholar 

  • D’Andrade BW, Holmes RJ, Forrest SR (2004) Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer. Adv Mater 16:624–628

    Google Scholar 

  • Dobbertin T, Kroeger M, Heithecker D, Schneider D, Metzdorf D, Neuner H, Becker E, Johannes HH, Kowalsky W (2003) Inverted top-emitting organic light-emitting diodes using sputter-deposited anodes. Appl Phys Lett 82:284–286

    ADS  Google Scholar 

  • Dodabalapur A, Rothberg LJ, Jordan RH, Miller TM, Slusher RE, Phillips JM (1996) Physics and applications of organic microcavity light-emitting diodes. J Appl Phys 80:6954–6964

    ADS  Google Scholar 

  • Drexhage KH (1970) Influence of a dielectric interface on fluorescence decay time. J Lumin 1-2:693–701

    Google Scholar 

  • Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C (2009) Thermally-activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light-emitting diodes- a novel mechanism for electroluminescence. Adv Mater 21:4802–4806

    Google Scholar 

  • Erickson NC, Holmes R (2013) Investigating the role of emissive layer architecture on the exciton recombination zone in organic light-emitting devices. Adv Funct Mater 23:5190–5198

    Google Scholar 

  • Feng J, Li F, Gao WB, Liu SY, Liu Y, Wang Y (2001) White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer. Appl Phys Lett 78:3947–3949

    ADS  Google Scholar 

  • Flämmich M, Frischeisen J, Setz DS, Michaelis D, Krummacher BC, Schmidt TD, Brütting W, Danz N (2011) Oriented phosphorescent emitters boost OLED efficiency. Org Electron 12:1663–1668

    Google Scholar 

  • Forget S, Chenais S, Tondelier D, Geffroy B, Gozhyk I, Lebental M, Ishow E (2010) Red-emitting fluorescent organic light emitting diodes with low sensitivity to self-quenching. J Appl Phys 108:064509

    ADS  Google Scholar 

  • Freitag P, Zakhidov AA, Luessem B, Zakhidov AA, Leo K (2012) Lambertian white top-emitting organic light emitting device with carbon nanotube cathode. J Appl Phys 112:114505

    ADS  Google Scholar 

  • Frischeisen J, Yokoyama D, Endo A, Adachi C, Brütting W (2011) Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters. Org Electron 12:809–817

    Google Scholar 

  • Fukugawa H, Shimizu T, Ohbe N, Tokito S, Tokumaru K, Fujikake H (2012) Anthracene derivatives as efficient emitting hosts for blue organic light-emitting diodes utilizing triplet-triplet annihilation. Org Electron 13:1197–1203

    Google Scholar 

  • Furno M, Meerheim R, Hofmann S, Lüssem B, Leo K (2012a) Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B 85:115205

    ADS  Google Scholar 

  • Furno M, Rosenow TC, Gather MC, Lüssem B, Leo K (2012b) Analysis of the external and internal quantum efficiency of multi-emitter, white organic light emitting diodes. Appl Phys Lett 101:143304

    ADS  Google Scholar 

  • Furukawa T, Nakanotani H, Adachi C (2015) Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Sci Rep 5:8429

    Google Scholar 

  • Gao Y (2010) Interface in organic semiconductor devices: dipole, doping, band bending, and growth. In: So F (ed) Organic electronics: materials, processing, devices and applications, 1st edn. CRC Press, Boca Raton, pp 141–179

    Google Scholar 

  • Gather MC, Reineke S (2015) Recent advances in light outcoupling from white organic light-emitting diodes. J Photonics Energy 5:057607

    ADS  Google Scholar 

  • Goushi K, Kwong R, Brown J, Sasabe H, Adachi C (2004) Triplet exciton confinement and unconfinement by adjacent hole-transport layers. J Appl Phys 97:7798–7802

    ADS  Google Scholar 

  • Goushi K, Yoshida K, Sato K, Adachi C (2012) Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat Photonics 6:253–258

    ADS  Google Scholar 

  • Greenham NC, Friend RH, Bradley DDC (1994) Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations. Adv Mater 6:491–494

    Google Scholar 

  • Gu G, Bulović V, Burrows PE, Forrest SR, Thompson ME (1996) Transparent organic light emitting devices. Appl Phys Lett 68:2606–2608

    ADS  Google Scholar 

  • Han TH, Lee Y, Choi MR, Woo SH, Bae SH, Hong BH, Ahn JH, Lee TW (2012) Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics 6:105–110

    ADS  Google Scholar 

  • Helander MG, Wang Z, Lu Z-H (2012) Electrode-organic Interface physics. In: Bhushan B (ed) Encyclopedia of nanotechnology, 1st edn. Springer Netherlands, Dordrecht, pp 702–710

    Google Scholar 

  • Higuchi T, Nakanotani H, Adachi C (2015) High-efficiency white organic light-emitting diodes based on blue thermally activated delayed fluorescent emitter combined with green and red fluorescent emitters. Adv Mater 27:2019–2023

    Google Scholar 

  • Hirata S, Sakai Y, Masi K, Tanaka H, Lee SY, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q, Shizu K, Miyazaki H, Adachi C (2015) Highly efficient blue electroluminescence based on thermally-activated delayed fluorescence. Nat Mater 14:330–336

    ADS  Google Scholar 

  • Holmes RJ, D’Andrade BW, Forrest SR, Ren X, Li J, Thompson ME (2003) Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl Phys Lett 83:3818–3820

    ADS  Google Scholar 

  • Hu JY, Pu YJ, Satoh F, Kawata S, Katagiri H, Sasabe H, Kido J (2014) Bisanthracene-based donor-acceptor type light-emitting dopants: highly efficient deep-blue emission in organic light-emitting devices. Adv Funct Mater 24:2064–2071

    Google Scholar 

  • Huang Q, Walzer K, Pfeiffer M, Lyssenko V, He G, Leo K (2006) Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers. Appl Phys Lett 88:113515

    ADS  Google Scholar 

  • Hung LS, Tang CW, Mason MG, Raychaudhuri P, Madathil J (2001) Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes. Appl Phys Lett 78:544–546

    ADS  Google Scholar 

  • Hung WY, Chiang PY, Lin SW, Tang WC, Chen YT, Liu SH, Chou PT, Hung YT, Wong KT (2016) Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor. ACS Appl Mater Interfaces 8:4811–4818

    Google Scholar 

  • Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11:605–625

    Google Scholar 

  • Jurow MJ, Mayr C, Schmidt TD, Lampe T, Djurovich PI, Brütting W, Thompson ME (2016) Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials. Nat Mater 15:85–91

    ADS  Google Scholar 

  • Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S, Komino T, Oiwa H, Suzuki F, Wakamiya A, Murata Y, Adachi C (2015) Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat Commun 6:8476

    ADS  Google Scholar 

  • Kanno H, Sun Y, Forrest SR (2005) High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices. Appl Phys Lett 86:263502

    ADS  Google Scholar 

  • Kawamura Y, Yanagida S, Forrest SR (2002) Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. J Appl Phys 92:87–93

    ADS  Google Scholar 

  • Kawamura Y, Goushi K, Brooks J, Brown JJ, Sasabe H, Adachi C (2005) 100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Appl Phys Lett 86:071104

    ADS  Google Scholar 

  • Kena-Cohen S, Forrest SR (2010) Room-temperature polariton lasing in an organic single-crystal microcavity. Nat Photonics 4:371–375

    ADS  Google Scholar 

  • Kido J, Hongawa K, Okuyama K, Nagai K (1994) White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl Phys Lett 64:815–817

    ADS  Google Scholar 

  • Kido J, Shionoya H, Nagai K (1995a) Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole). Appl Phys Lett 67:2281–2283

    ADS  Google Scholar 

  • Kido J, Kimura M, Nagai K (1995b) Multilayer white light-emitting organic electroluminescent device. Science 267:1332–1334

    ADS  Google Scholar 

  • Kim JS, Ho PHK, Thomas DS, Friend RH, Bao GW, Li SFY, Cacialli F (1999) X-ray photoelectron spectroscopy of surface-treated indium tin oxide thin films. Chem Phys Lett 315:307–312

    ADS  Google Scholar 

  • Kim JS, Ho PKH, Greenham NC, Friend RH (2000) Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations. J Appl Phys 88:1073–1081

    ADS  Google Scholar 

  • Kim HK, Kim DG, Lee KS, Huh MS, Jeong SH, Kim KI, Seong TY (2005) Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes. Appl Phys Lett 86:183503

    ADS  Google Scholar 

  • Kim KH, Lee S, Moon CK, Kim SY, Park YS, Lee JH, Lee JW, Huh J, You YM, Kim JJ (2014) Phosphorescent dye-based supramolecules for high efficiency organic light-emitting diodes. Nat Commun 5:4769

    ADS  Google Scholar 

  • Komino T, Tanaka H, Adachi C (2014) Selectively controlled orientational ordering linear-shaped thermally activated delayed fluorescent dopants. Chem Mater 26:3665–3671

    Google Scholar 

  • Kondakov DY (2008) Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes. J Appl Phys 104:084520

    ADS  Google Scholar 

  • Kondakov DY, Lenhart WC, Nichols WF (2007) Operational degradation of organic light-emitting diodes: mechanism and identification of chemical products. J Appl Phys 101:024512

    ADS  Google Scholar 

  • Kondakov DY, Pawlik TD, Hatwar TK, Spindler JP (2009) Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J Appl Phys 106:124510

    ADS  Google Scholar 

  • Kondakova ME, Pawlik TD, Young RH, Giesen DJ, Kondakov DY, Brown CT, Deaton JC, Lenhard JR, Klubek KP (2008) High-efficiency, low-voltage phosphorescent organic light-emitting diode devices with mixed host. J Appl Phys 104:094501

    ADS  Google Scholar 

  • Krummacher BC, Nowy S, Frischeisen J, Klein M, Brütting W (2009) Efficiency analysis of organic light-emitting diodes based on optical simulation. Org Electron 10:478–485

    Google Scholar 

  • Kuma H, Hosokawa C (2014) Blue fluorescent OLED materials and their application for high performance devices. Sci Technol Adv Mater 15:034201

    Google Scholar 

  • Langevin P (1903) Ionisation des gaz. Ann Chim Phys 28:289–384

    Google Scholar 

  • Lee H, Park I, Kwak J, Yoon DY, Lee C (2010) Improvement of electron injection in inverted bottom-emission blue phosphorescent organic light emitting diodes using zinc oxide nanoparticles. Appl Phys Lett 96:153306

    ADS  Google Scholar 

  • Lee S, Kim KH, Limbach D, Park YS, Kim JJ (2013) Low roll-off and high efficiency orange organic light-emitting diodes with controlled co-doping of green and red phosphorescent dopants in an exciplex forming co-host. Adv Funct Mater 23:4105–4110

    Google Scholar 

  • Lee JS, Chen HF, Batagoda T, Coburn C, Djurovich PI, Thompson ME, Forrest SR (2016) Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat Mater 15:92–98

    ADS  Google Scholar 

  • Li W, Kwok H (2012) Conduction mechanisms in organic semiconductors. In: Bhushan B (ed) Encyclopedia of nanotechnology, 1st edn. Springer Netherlands, Dordrecht, pp 493–500

    Google Scholar 

  • Li J, Hu L, Wang L, Zhou Y, Grüner G, Marks TJ (2006) Organic light-emitting diodes having carbon nanotube anodes. Nano Lett 6:2472–2477

    ADS  Google Scholar 

  • Li W, Li J, Wang F, Gao Z, Zhang S (2015) Universal host materials for high-efficiency phosphorescent and delayed-fluorescence OLEDs. ACS Appl Mater Interfaces 7:26206–26216

    Google Scholar 

  • Liao LS, Hung LS, Chan WC, Ding XM, Sham TK, Bello I, Lee CS, Lee ST (1999) Ion-beam-induced surface damages on tris-(8-hydroxyquinoline) aluminum. Appl Phys Lett 75:1619–1621

    ADS  Google Scholar 

  • Lin HW, Lin CL, Chang HH, Lin YT, Wu CC, Chen YM, Chen RT, Chien YY, Wong KT (2004) Anisotropic optical properties and molecular orientation in vacuum-deposited ter(9,9-diarylfluorene)s thin films using spectroscopic ellipsometry. J Appl Phys 95:881–886

    ADS  Google Scholar 

  • Liu XK, Chen Z, Zheng CJ, Chen M, Liu W, Zhang XH, Lee CS (2015) Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex. Adv Mater 27:2025–2030

    Google Scholar 

  • Lu MH, Weaver MS, Zhou TX, Rothman M, Kwong RC, Hack M, Brown JJ (2002) High-efficiency top-emitting organic light-emitting devices. Appl Phys Lett 81:3921–3923

    ADS  Google Scholar 

  • Lu CY, Jiao M, Lee WK, Chen CY, Tsai WL, Lin CY, Wu CC (2016) Achieving above 60% external quantum efficiency in organic light-emitting devices using ITO-free low index transparent electrode and emitters with preferential horizontal emitting dipoles. Adv Funct Mater 26:3250–3258

    Google Scholar 

  • Lyu YY, Kwak J, Kwon O, Lee SH, Kim D, Lee C, Char K (2008) Silicon cored anthracene derivatives as host materials for highly efficient blue organic light-emitting devices. Adv Mater 20:2720–2724

    Google Scholar 

  • Ma R (2012) Organic light emitting diodes (OLEDS). In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology, 1st edn. Springer, Heidelberg, pp 1209–1222

    Google Scholar 

  • Masui K, Nakanotani H, Adachi C (2013) Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Org Electron 14:2721–2272

    Google Scholar 

  • Mazzeo M, Pisignano D, Della Sala F, Thompson J, Blyth RIR, Gigli G, Cingolani R, Sotgiu G, Barbarella G (2003) Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue emitting molecules. Appl Phys Lett 82:334–336

    ADS  Google Scholar 

  • Meerheim R, Furno M, Hofmann S, Lüssem B, Leo K (2010) Quantification of energy loss mechanisms in organic light-emitting diodes. Appl Phys Lett 97:253305

    ADS  Google Scholar 

  • Morii K, Ishida M, Takashima T, Shimoda T, Wang Q, Nazeeruddin K, Grӓtzel M (2006) Encapsulation-free hybrid organic-inorganic light-emitting diodes. Appl Phys Lett 89:183510

    ADS  Google Scholar 

  • Murawski C, Leo K, Gather MC (2013) Efficiency roll-off in organic light-emitting diodes. Adv Mater 25:6801–6827

    Google Scholar 

  • Nakanotani H, Masui K, Nishide J, Shibata T, Adachi C (2013) Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Sci Rep 3:2127

    ADS  Google Scholar 

  • Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C (2014) High-efficiency organic light-emitting diodes with fluorescent emitters. Nat Commun 5:4016–4023

    ADS  Google Scholar 

  • Nishide JI, Nakanotani H, Hiraga Y, Adachi C (2014) High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence. Appl Phys Lett 104:23304

    Google Scholar 

  • Noriega R, Salleo A (2012) Charge transport theories in organic semiconductors. In: Klauk H (ed) Organic electronics II: more materials and applications, 1st edn. Wiley-VCH, Weinheim, pp 67–104

    Google Scholar 

  • Notsuka N, Kabe R, Goushi K, Adachi C (2017) Confinement of long-lived triplet excitons in organic semiconducting host-guest systems. Adv Funct Mater 27:1703902

    Google Scholar 

  • Olthof S, Meerheim R, Schober M, Leo K (2009) Energy level alignment at the interfaces in a multilayer organic light-emitting diode structure. Phys Rev B 79:245308

    ADS  Google Scholar 

  • Park YS, Lee S, Kim KH, Kim SY, Lee JH, Kim JJ (2013) Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency. Adv Funct Mater 23:4914–4920

    Google Scholar 

  • Parthasarathy G, Adachi C, Burrows PE, Forrest SR (2000) High-efficiency transparent organic light-emitting devices. Appl Phys Lett 76:2128–2130

    ADS  Google Scholar 

  • Pu Y-J, Nakata G, Satoh F, Sasabe H, Yokoyama D, Kido J (2012) Optimizing the charge balance of fluorescent organic light-emitting devices to achieve high external quantum efficiency beyond the conventional upper limit. Adv Mater 24:1765–1770

    Google Scholar 

  • Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Google Scholar 

  • Reineke S, Walzer K, Leo K (2007) Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys Rev B 75:125328

    ADS  Google Scholar 

  • Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K (2009a) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234–238

    ADS  Google Scholar 

  • Reineke S, Schwartz G, Walzer K, Falke M, Leo K (2009b) Highly phosphorescent organic mixed films: the effects of aggregation on triplet-triplet annihilation. Appl Phys Lett 94:163305

    ADS  Google Scholar 

  • Ribierre JC, Ruseckas A, Knights K, Staton SV, Cumpstey N, Burn PL, Samuel IDW (2008) Triplet exciton diffusion and phosphorescence quenching in iridium(III)-centered dendrimers. Phys Rev Lett 100:017402

    ADS  Google Scholar 

  • Riel H, Karg S, Beierlein T, Ruhstaller B, Rieß W (2003) Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling. Appl Phys Lett 82:466–468

    ADS  Google Scholar 

  • Samuel IDW, Turnbull GA (2007) Organic semiconductor lasers. Chem Rev 107:1272–1295

    Google Scholar 

  • Sasabe H, Kido J (2013) Recent progress in phosphorescent organic light-emitting devices. Eur J Org Chem 2013:7653–7663

    Google Scholar 

  • Sasabe H, Nakanishi H, Watanabe Y, Yano S, Hirasawa M, Pu Y-J, Kido J (2013) Extremely low operating voltage green phosphorescent organic light-emitting devices. Adv Funct Mater 23:5550–5555

    Google Scholar 

  • Saxena K, Jain VK, Mehta DS (2009) A review on the light extraction techniques in organic electroluminescent devices. Opt Mater 32:221–233

    ADS  Google Scholar 

  • Schmidt TD, Setz DS, Flämmich M, Frischeisen J, Michaelis D, Krummacher BC, Danz N, Brütting W (2011) Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency. Appl Phys Lett 99:163302

    ADS  Google Scholar 

  • Scholz S, Kondakov D, Lüssem B, Leo K (2015) Degradation mechanisms and reactions in organic light-emitting devices. Chem Rev 115:8449–8503

    Google Scholar 

  • Scott JC, Karg S, Carter SA (1997) Bipolar charge and current distributions in organic light-emitting diodes. J Appl Phys 82:1454–1460

    ADS  Google Scholar 

  • Scott JC, Malliaras GG, Salem JR, Brock PJ, Bozano L, Carter SA (1998) Injection, transport, and recombination in organic light-emitting diodes. Proc SPIE 3476:111–122

    ADS  Google Scholar 

  • Shin H, Lee SG, Kim KH, Moon CK, Yoo SJ, Lee JH, Kim JJ (2014) Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit. Adv Mater 26:4730–4734

    Google Scholar 

  • Shinar J, Savvateev V (2004) Introduction to organic light-emitting devices. In: Shinar J (ed) Organic light-emitting devices: a survey, 1st edn. Springer, New York, pp 1–41

    Google Scholar 

  • Shirota J, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010

    Google Scholar 

  • Smith LH, Wasey JAE, Barnes WL (2004) Light outcoupling efficiency of top-emitting organic light-emitting diodes. Appl Phys Lett 84:2986

    ADS  Google Scholar 

  • Smith LH, Wasey JAE, Samuel IDW, Barnes WL (2005) Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield. Adv Funct Mater 15:1839–1844

    Google Scholar 

  • So F (2010) Organic electronics: materials, processing, devices and applications. CRC Press, Boca Raton

    Google Scholar 

  • Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR (2006) Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440:908–912

    ADS  Google Scholar 

  • Sun JW, Lee JH, Moon CK, Kim KH, Shin H, Kim JJ (2014) A fluorescent organic light-emitting diode with 30% external quantum efficiency. Adv Mater 26:5684–5688

    Google Scholar 

  • Tanaka D, Sasabe H, Li YJ, Su SJ, Takeda T, Kido J (2007) Ultrahigh efficiency green organic light-emitting devices. Jpn J Appl Phys 46:L10–L12

    Google Scholar 

  • Tang CW, Van Slyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    ADS  Google Scholar 

  • Tang CW, VanSlyke SA, Chen CH (1989) Electroluminescence of doped organic thin films. J Appl Phys 65:3610–3616

    ADS  Google Scholar 

  • Tao Y, Yang C, Qin J (2011) Organic host materials for phosphorescent organic light-emitting diodes. Chem Soc Rev 40:2943–2970

    Google Scholar 

  • Tsang DPK, Matsushima T, Adachi C (2016) Operational stability enhancement in organic light-emitting diodes with ultrathin Liq interlayers. Sci Rep 6:22463

    ADS  Google Scholar 

  • Tse SC, Cheung CH, So SK (2010) Charge transport and injection in amorphous organic semiconductors. In: So F (ed) Organic electronics: materials, processing, devices and applications, 1st edn. CRC Press, Boca Raton, pp 61–109

    Google Scholar 

  • Tsutsui T, Takada N (2013) Progress in emission efficiency of organic light-emitting diodes: basic understanding and its technical application. Jpn J Appl Phys 52:110001

    ADS  Google Scholar 

  • Tsutsui T, Yahiro M, Yokogawa H, Kawano K, Yokoyama M (2001) Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer. Adv Mater 13:1149–1152

    Google Scholar 

  • Udagawa K, Sasabe H, Igarashi F, Kido J (2016) Simultaneous realization of high EQE of 30%, low drive voltage, and low efficiency roll-off at high brightness in blue phosphorescent OLEDs. Adv Opt Mater 4:86–90

    Google Scholar 

  • Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238

    ADS  Google Scholar 

  • Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233–1271

    Google Scholar 

  • Wang Q, Ding J, Ma D, Cheng Y, Wang L, Jing X, Wang F (2009) Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: fabrication and emission-mechanism analysis. Adv Funct Mater 19:84–95

    Google Scholar 

  • Wang ZB, Helander MG, Qiu J, Puzzo DP, Greiner MT, Hudson ZM, Wang S, Liu ZW, Lu ZH (2011) Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nat Photonics 5:753–757

    ADS  Google Scholar 

  • Wasey JAE, Barnes WL (2000) Efficiency of spontaneous emission from planar microcavities. J Mod Opt 47:725–741

    ADS  Google Scholar 

  • Williams EL, Haavisto K, Li J, Jabbour GE (2007) Excimer-based white phosphorescent organic light-emitting diodes with nearly 100% internal quantum efficiency. Adv Mater 19:197–202

    Google Scholar 

  • Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276

    ADS  Google Scholar 

  • Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4:43–48

    Google Scholar 

  • Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952

    Google Scholar 

  • Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, Liu X (2014) Recent progress in metal-organic complexes for optoelectronic applications. Chem Soc Rev 43:3259–3302

    Google Scholar 

  • Yamamoto H, Oyamada T, Sasabe H, Adachi C (2004) Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl Phys Lett 84:1401

    ADS  Google Scholar 

  • Yao L, Zhang S, Wang R, Li W, Shen F, Yang B, Ma Y (2014) Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons. Angew Chem 126:2151–2155

    Google Scholar 

  • Yersin H, Finkenzeller WJ (2008) Triplet emitters for organic light-emitting diodes: basic properties. In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials, 1st edn. Wiley-VCH, Weinheim, pp 1–97

    Google Scholar 

  • Yokoyama D (2011) Molecular orientation in small molecule organic light-emitting diodes. J Mater Chem 21:19187–19202

    Google Scholar 

  • Yokoyama D, Adachi C (2010) In situ real-time spectroscopic ellipsometry measurement for the investigation of molecular orientation in organic amorphous multilayer structures. J Appl Phys 107:123512

    ADS  Google Scholar 

  • Yokoyama D, Sakaguchi A, Suzuki M, Adachi C (2009) Horizontal orientation of linear-shaped organic molecules having bulky substituents in neat and doped vacuum-deposited amorphous films. Org Electron 10:127–137

    Google Scholar 

  • Yook KS, Lee JY (2014) Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv Mater 26:4218–4233

    Google Scholar 

  • Yoshida K, Nakanotani H, Adachi C (2016) Effect of Joule heating on transient current and electroluminescence in p-i-n organic light-emitting diodes under pulsed voltage operation. Org Electron 31:287–294

    Google Scholar 

  • Zhang M, Fang S, Zakhidov AA, Lee SB, Aleiv AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219

    ADS  Google Scholar 

  • Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6:1880–1886

    ADS  Google Scholar 

  • Zhang Y, Lee J, Forrest SR (2014a) Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat Commun 5:5008

    ADS  Google Scholar 

  • Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C (2014b) Efficient blue organic light-emitting diodes employing thermally-activated delayed fluorescence. Nat Photonics 8:326–332

    ADS  Google Scholar 

  • Zhang Q, Kuwabara H, Potscavage WJ, Huang S, Hatae Y, Shibata T, Adachi C (2014c) Anthraquinone-based intramolecular charge transfer compounds: computational molecular design, thermally-activated delayed fluorescence, and highly efficient red electroluminescence. J Am Chem Soc 136:18070–18081

    Google Scholar 

  • Zhang Q, Tsang D, Kuwabara H, Hatae Y, Li B, Takahashi T, Lee SY, Yasuda T, Adachi C (2015) Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv Mater 27:2096–2100

    Google Scholar 

  • Zhao Y, Zhu L, Chen J, Ma D (2012) Improving color stability of blue/orange complementary white OLEDs by using single-host double-emissive layer structure: comprehensive experimental investigation into the device working mechanism. Org Electron 13:1340–1348

    Google Scholar 

  • Zhao L, Komino T, Inoue M, Kim JH, Ribierre JC, Adachi C (2015) Horizontal molecular orientation in solution-processed organic light-emitting diodes. Appl Phys Lett 106:063301

    ADS  Google Scholar 

  • Zhou X, Pfreiffer M, Huang JS, Blochwitz-Nimoth J, Qin DS, Werner A, Drechsel J, Maennig B, Leo K (2002) Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping. Appl Phys Lett 81:922–924

    ADS  Google Scholar 

  • Zhu M, Yang C (2013) Blue fluorescent emitters: design tactics and applications in organic light-emitting diodes. Chem Soc Rev 42:4963–4976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Méhes .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Japan KK, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Méhes, G., Sandanayaka, A.S.D., Ribierre, JC., Goushi, K. (2020). Physics and Design Principles of OLED Devices. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55761-6_49-1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55761-6_49-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55761-6

  • Online ISBN: 978-4-431-55761-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics