Skip to main content

Entstehungsmechanismen des EEG

  • Chapter
  • First Online:
Klinische Elektroenzephalographie

Zusammenfassung

Zu unterscheiden sind unmittelbare Potentialquellen (Potentialgeneratoren) des EEG und zerebrale Netzwerke, die den Rhythmus oder die verschiedenen Potentialmuster bedingen, mit denen die kortikalen Spannungsschwankungen registriert werden. Die eigentlichen Potentialgeneratoren liegen in der Hirnrinde und die physiologischen Grundlagen gelten als gut gesichert. Die verschiedenartigen Potentialmuster im EEG sind das Ergebnis von Netzwerkinteraktionen in kortikalen und subkortikalen Regionen, die noch nicht in allen Einzelheiten aufgeklärt werden konnten. Erläutert wird in diesem Kapitel u.a. die Bedeutung glialer Elemente, die Kontrolle der Hirnrindentätigkeit durch die Kerngebiete von Thalamus und Formatio reticularis und die enge Verknüpfung von Weckreaktionen (arousal) mit EEG-Desynchronisierungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    DC = „direct current“ (Gleichstrom; im übertragenen Sinne = Gleichspannung), im Gegensatz zu AC = „alternating current“ (Wechselstrom).

  2. 2.

    Unter einem Terminationsareal (Terminationsfeld) versteht man die horizontale Ausdehnung der intrakortikalen Verzweigungen einer in den Kortex ziehenden (afferenten) Nervenfaser. Spezifische Fasern haben Terminationsfelder mit einem Durchmesser von 200–600 \(\upmu\)m, unspezifische Fasern breiten sich dagegen vermutlich bis über mehrere Millimeter hinweg aus.

Literatur

  • Adrian ED, Matthews BHC (1934) The interpretation of potential waves in the cortex. J Physiol 81:440–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen P, Andersson SA (1968) Physiological basis of the alpha rhythm. Appleton Century Crofts, New York

    Google Scholar 

  • Bremer F (1958) Cerebral and cerebellar potentials. Physiol Rev 38:357–388

    Article  PubMed  CAS  Google Scholar 

  • Brodal A (1981) Neurological anatomy, relation to Clinical Anatomy, 3. Aufl. Oxford University Press, New York

    Google Scholar 

  • Brooks C, Eccles JC (1947) Electrical investigation of the monosynaptic pathway through the spinal cord. J Neurophysiol 10:251–274

    Article  PubMed  CAS  Google Scholar 

  • Brown BB, Klug FW (Hrsg) (1974) The alpha syllabus. A handbook of human EEG alpha activity. Thomas, Springfield

    Google Scholar 

  • Buzsáki G, Bickford RG, Ponomareff G et al (1988) Nucleus basalis and the thalamic control of neocortical activity in the freely moving rat. J Neurosci 8:4007–4026

    Article  PubMed  PubMed Central  Google Scholar 

  • Callaway E (1962) Factors influencing the relation-ship between alpha activity and visual reaction time. Electroencephalogr Clin Neurophysiol 14:674–682

    Article  PubMed  Google Scholar 

  • Caspers H (1961) Die Entstehungsmechanismen des EEG. In: Janzen R (Hrsg) Klinische Elektroenzephalographie. Springer, Berlin Göttingen Heidelberg, S 4–26

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkühler A (1980) Electrogenesis of cortical DC potentials. In: Kornhuber HH, Deecke J (Hrsg) Motivation, motor and sensory processes of the brain: Electrical potentials, behavior and clinical use. Progress in Brain Research, Bd. 54. Elsevier, New York, S 3–15

    Google Scholar 

  • Creutzfeldt OD (1983) Cortex cerebri. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Creutzfeldt OD, Houchin J (1974) Neuronal basis of EEG-waves. In: Teil C. Handbook of Electroencephalogr Clin Neurophysiol, Bd. 2. Elsevier, Amsterdam, S C5–C55

    Google Scholar 

  • Creutzfeldt OD, Jung R (1961) Neuronal discharge in the cat’s motor cortex during sleep and arousal. In: Wolstenholme GEW, O’Connor M (Hrsg) The nature of sleep. Churchill, London, S 131–170

    Google Scholar 

  • Creutzfeldt OD, Struck G (1962) Neurophysiologie und Morphologie der chronisch isolierten Cortexinsel der Katze. Arch Psychiat Nervenkrankh 203:708–731

    Article  CAS  Google Scholar 

  • Creutzfeldt OD, Watanabe S, Lux HD (1966) Relations between EEG-phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol 20:19–37

    Article  PubMed  CAS  Google Scholar 

  • Dustman RE, Beck EC (1965) Phase of alpha brain waves, reaction time, and visually evoked potentials. Electroencephalogr Clin Neurophysiol 18:433–440

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Göttingen Heidelberg

    Book  Google Scholar 

  • Firbas W, Gruber H, Mayr R (1988) Neuroanatomie. Maudrich, Wien München Bern

    Google Scholar 

  • Gastaut H (1974) Vom Berger-Rhythmus zum Alpha-Kult und zur Alpha-Kultur. Z EEG-EMG 5:189–199

    Google Scholar 

  • Giannitrapani D (1971) Scanning mechanisms and the EEG. Electroencephalogr Clin Neurophysiol 30:139–146

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jasper H (1949) Diffuse projection systems: the integrative action of the thalamic reticular system. Electroencephalogr Clin Neurophysiol 1:405–420

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162:285–308

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

    Book  Google Scholar 

  • Kahle W, Leonhardt H, Platzer W (Hrsg) (1979) Taschenatlas der Anatomie. Bd 3: Kahle W, Nervensystem und Sinnesorgane. Thieme, Stuttgart

    Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Erg Physiol 57:1–90

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW, Potter DD (1964) Glia in the leech central nervous system: Physiological properties and neuron-glia relationship. J Neurophysiol 27:290–320

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–780

    Article  PubMed  CAS  Google Scholar 

  • Li C-L, Jasper H (1953) Microelectrode studies of the electrical activity of the cerebral cortexin the cat. J Physiol 121:117–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loewenstein WR (1981) Functional intercellular communication: the cell-to-cell membrane channel. Physiol Rev 61:829–913

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva F (1991) Neural mechanisms underlying brain waves: From neural membranes to networks. Electroencephalogr Clin Neurophysiol 79:81–93

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Bal Th (1997) Sleep and arousal: thalamocortical mechanisms. Ann Rev Neurosci 20:185–215

    Article  PubMed  CAS  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1958) Modality and topographic properties of single neurons in cat’s somatic sensory cortex. J Neurophysiol 20:408–437

    Article  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1991) Das Zentralnervensystem des Menschen, 2. Aufl. Springer, Berlin Heidelberg New York Tokio

    Book  Google Scholar 

  • Nuñez PL (1981) Electric fields of the brain. Oxford University Press, New York Oxford

    Google Scholar 

  • Oshima T (1983) Intracortical organization of arousal as a model of dynamic neuronal processes that may involve a set of neurons. In: Desmedt JE (Hrsg) Motor control mechanisms in health and disease. Raven, New York, S 287–302

    Google Scholar 

  • Petsche H (1989) Wie entsteht das EEG? EEG-Labor 11:120–135

    Google Scholar 

  • Petsche H (1990a) Epilepsie. In: Zwiener U, Ludin HT, Petsche H (Hrsg) Neuropathologie. Fischer, Jena

    Google Scholar 

  • Pfurtscheller G, Arinabar A (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 42:817–826

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Pfurtscheller B (1970) Korrelation zwischen α-Rhythmus und gemittelten kortikalen Reizantworten. Z EEG-EMG 1:197–204

    Google Scholar 

  • Purpura DP, Yahr MD (Hrsg) (1966) The thalamus. Columbia Univ Press, New York London

    Google Scholar 

  • Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2:145–167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramón y Cajal S (1904) La Textura del Sistema Nerviosa del Hombre y los Vertebrados. Moya, Madrid

    Google Scholar 

  • Ransom BR, Sontheimer H (1992) The neurophysiology of glial cells. J Clin Neurophysiol 9:224–251

    Article  PubMed  CAS  Google Scholar 

  • Rauber A, Kopsch F (1987) Anatomie des Menschen. In: Leonhardt H, Töndury G, Zilles K (Hrsg) Nervensystem, Sinnesorgane, Bd. 3. Thieme, Stuttgart New York, S 87

    Google Scholar 

  • Rémond A, Lesèvre N (1967) Variations in average visual potential as a function of the alpha rhythm phase (‘autostimulation’). Electroencephalogr Clin Neurophysiol 26(Suppl):42–52

    Google Scholar 

  • Riekkinen P, Buzsaki G, Riekkinen P Jr et al (1991) The cholinergic system and EEG slow waves. Electroencephalogr Clin Neurophysiol 78:89–96

    Article  PubMed  CAS  Google Scholar 

  • Saper CB (1987) Diffuse cortical protection systems: anatomical organization and role in cortical function. In: Handbook of Physiology, sect 1: The nervous system, Bd. 5. Am Physiol Soc, Bethesda, S 169–210 (TEil 1, Kap. 6)

    Google Scholar 

  • Scheibel ME, Scheibel AB (1966a) The organization of the nucleus reticularis thalami: a Golgi study. Brain Res 1:43–62

    Article  PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1966b) Patterns of organization in specific and nonspecific thalamic fields. In: Purpura DP, Yahr MD (Hrsg) The Thalamus. Columbia Univ Press, New York, London, S 13–46

    Google Scholar 

  • Sherman SM, Guillery RW (2006) Exploring the thalamus and its role in cortical function. MIT Press, Cambridge, London

    Google Scholar 

  • Simon O (1977) Das Elektroenzephalogramm. Urban & Schwarzenberg, München Wien Baltimore

    Google Scholar 

  • Somjen GG (1975) Electrophysiology of neuroglia. Ann Rev Physiol 37:163–190

    Article  CAS  Google Scholar 

  • Somjen GG (1993) Glial and neuronal generators of sustained potential shifts associated with electrographic seizures. In: Zschocke S, Speckmann E-J (Hrsg) Basic mechanisms of the EEG. Birkhäuser, Boston Basel Berlin, S 97–108

    Chapter  Google Scholar 

  • Speckmann E-J (1981) Einführung in die Neurophysiologie. Wiss Buchges, Darmstadt

    Google Scholar 

  • Speckmann EJ (1999) Die Erregungsübertragung. In: Deetjen P, Speckmann EJ (Hrsg) Physiologie. Urban & Fischer, München, S 26–34

    Google Scholar 

  • Speckmann E-J, Caspers H (1974) The effect of O2- and CO2-tensions in the nervous tissue on neuronal activity and DC potentials. In: Handbook of Electroencephalogr Clin Neurophysiol, Bd. 2, Teil C. Elsevier, Amsterdam, S C71–C89

    Google Scholar 

  • Speckmann E-J, Elger CE (2005) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Lopes da Silva (Hrsg) Electroencephalography, 5. Aufl. Lippincott Williams & Wilkins, Baltimore, S 17–29

    Google Scholar 

  • Steriade M (2005) Cellular substrates of brain rhythms. In: Niedermeyer E, Lopes da Silva F (Hrsg) Electroencephalography, 5. Aufl. Lippincott Williams & Wilkins, Baltimore, S 31–83

    Google Scholar 

  • Steriade M, Deschênes M (1984) The thalamus as a neuronal oscillator. Brain Res Rev 8:1–63 (in Brain Res 320)

    Article  Google Scholar 

  • Steriade M, Llinás R (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Gloor P, Llinás RR et al (1990a) Basic mechanisms of the cerebral rhythmic activities (Report of IFCN Committee on Basic Mechanisms). Electroencephalogr Clin Neurophysiol 76:481–508

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Paré D, Hu B, Deschênes M (1990b) The visual thalamocortical system and its modulation by the brain stem core. In: Ottoson D (Hrsg) Progress in Sensory Physiology 10. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Surwillo WW (1963) The relation of simple response time to brain-wave frequency and the effects of age. Electroencephalogr Clin Neurophysiol 15:105–114

    Article  PubMed  CAS  Google Scholar 

  • Vogel F (1970) The genetic basis of the human electroencephalogram (EEG). Humangenetik 10:91–114

    Article  PubMed  CAS  Google Scholar 

  • Walker AE (1966) The primate thalamus, 2. Aufl. Univ Chicago Press, Chicago London

    Google Scholar 

  • Zhang LM, Jones EG (2004) Corticothalamic inhibition in the thalamic reticular nucleus. J Neurophysiol 91:759–766

    Article  PubMed  CAS  Google Scholar 

  • Zschocke S, Speckmann E-J (Hrsg) (1993) Basic mechanisms of the EEG. Birkhäuser, Boston Basel Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Christian Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zschocke, S., Hansen, HC. (2023). Entstehungsmechanismen des EEG. In: Zschocke, S., Hansen, HC. (eds) Klinische Elektroenzephalographie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63267-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63267-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63266-6

  • Online ISBN: 978-3-662-63267-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics