Skip to main content

Physiologie der Spermienreifung und Fertilisierung

  • Living reference work entry
  • First Online:
Andrologie

Part of the book series: Springer Reference Medizin ((SRM))

  • 65 Accesses

Zusammenfassung

Die erfolgreiche Befruchtung einer Eizelle ist das ultimative Ziel für ein reifes Spermium. Damit dieser Vorgang in vivo korrekt abläuft, folgt der natürliche Befruchtungsprozess einer zeit- und lokalisationsabhängigen Sequenz komplexer Schritte, beginnend bei der Produktion im Hoden, über die Reifung im Nebenhoden und letztendlich bei der Befruchtung der Eizelle. Spezifische Proteine und Oberflächenkomponenten in und an den Spermatozoen spielen dabei eine wichtige Rolle. Bei fertilen Männern erfolgt die natürliche Befruchtung der logisch bestimmten Reihenfolge der Ereignisse, bei infertilen Männern jedoch können diese Wege teilweise therapeutisch abgekürzt werden, um so letzendlich auch eine Vaterschaft herbeizuführen. So können nicht nur ejakulierte Spermatozoen, z. B. in vivo nach Insemination in den weiblichen Genitaltrakt, sondern auch Spermatozoen aus dem Hoden und dem Nebenhoden nach Injektion in die Eizelle in vitro vorherbestimmte Befruchtungsschritte ausführen und so zu einer intakten Schwangerschaft führen. Dieses Buchkapitel folgt dem Weg der Spermien vom Ort der Produktion bis zur befruchtungsfähigen Eizelle und beschreibt wichtige Prozesse, die Spermatozoen durchlaufen, um letztendlich ihr Ziel zu erreichen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Amdani SN, Yeste M, Jones C, Coward K (2016) Phospholipase C zeta (PLCζ) and male infertility: clinical update and topical developments. Adv Biol Regul 61:58–67

    Article  CAS  PubMed  Google Scholar 

  • Angelopoulos T, Adler A, Krey L, Licciardi F, Noyes N, McCullough A (1999) Enhancement or initiation of testicular sperm motility by in vitro culture of testicular tissue. Fertil Steril 71:240–243

    Article  CAS  PubMed  Google Scholar 

  • Archer SL, Roudebush WE (2013) Enhancement of sperm motility using pentoxifylline and platelet-activating factor. Methods Mol Biol 2013:241–245

    Article  CAS  Google Scholar 

  • Ashary N, Tiwari A, Modi D (2018) Embryo implantation: war in tTimes of love. Endocrinology 159:1188–1198. https://doi.org/10.1210/en.2017-03082

    Article  CAS  PubMed  Google Scholar 

  • Bedford JM (1988) The bearing of epididymal function in strategies for In vitro fertilization and gamete intrafollicular transfer. New York Acad Sci USA 541:284–291

    Article  CAS  Google Scholar 

  • Bedford JM (1994) The status and the state of the human epididymis. Hum Reprod 9:2187–2199

    Article  CAS  PubMed  Google Scholar 

  • Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björkgren I, Sipilä P (2019) The impact of epididymal proteins on sperm function. Reproduction 158:R155–R167

    Article  PubMed  Google Scholar 

  • Breitbart H, Cohen G, Rubinstein S (2005) Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction 129:263–268

    Article  CAS  PubMed  Google Scholar 

  • Brenker C, Goodwin N, Weyand I, Kashikar ND, Naruse M, Krähling M, Müller A, Kaupp UB, Strünker T (2012) The CatSper channel: a polymodal chemosensor in human sperm. EMBO J 31:1654–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton S, Nair AV, Battistone MA (2019) Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa. Andrology 7:631–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannarella R, Crafa A, Barbagallo F, Mongioì LM, Condorelli RA, Aversa A, Calogero AE, La Vignera S (2020) Seminal plasma proteomic biomarkers of oxidative stress. Int J Mol Sci 211(23):9113. https://doi.org/10.3390/ijms21239113

    Article  CAS  Google Scholar 

  • Carr DW, Newell AE (2007) The role of A-kinase anchoring proteins (AKaps) in regulating sperm function. Soc Reprod Fertil Suppl 63:135–141

    CAS  PubMed  Google Scholar 

  • Carrell DT (2012) Epigenetics of the male gamete. Fert Steril 97:267–274

    Article  CAS  Google Scholar 

  • Chansel-Debordeaux L, Dandieu S, Bechoua S, Jimenez C (2015) Reproductive outcome in globozoospermic men: update and prospects. Andrology 3:1022–1034

    Article  CAS  PubMed  Google Scholar 

  • Cissen M, Bensdorp A, Cohlen BJ, Repping S, de Bruin JP, van Wely M (2016) Assisted reproductive technologies for male subfertility. Cochrane Database Syst Rev 2:CD000360

    PubMed  Google Scholar 

  • Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131:11–22

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG (2007a) Sperm maturation in the epididymis: a new look at an old problem. Asian J Androl 9:533–539

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG (2007b) The human epididymis, sperm maturation and storage. ANIR-ANHP 9:18–21

    Google Scholar 

  • Cooper TG (2011) The epididymis, cytoplasmic droplets and male fertility. Asian J Androl 13:130–138. https://doi.org/10.1038/aja.2010.97

    Article  PubMed  Google Scholar 

  • Cooper TG, Keck C, Oberdieck U, Nieschlag E (1993) Effects of multiple ejaculations after extended periods of sexual abstinence on total, motile and normal sperm numbers, as well as accessory gland secretions from healthy normal and oligozoospermic men. Hum Reprod 8:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG, Barfield JP, Yeung CH (2005) Changes in osmolality during liquefaction of human semen. Int J Androl 28:58–60

    Article  PubMed  Google Scholar 

  • Correa-Perez JR, Fernandez-Pelegrina R, Aslanis P, Zavos PM (2004) Clinical management of men producing ejaculates characterized by high levels of dead sperm and altered seminal plasma factors consistent with epididymal necrospermia. Fertil Steril 81:1148–1150

    Article  PubMed  Google Scholar 

  • Cross NL (2003) Decrease in order of human sperm lipids during capacitation. Biol Reprod 69:529–534

    Article  CAS  PubMed  Google Scholar 

  • Dandekar P, Aggeler J, Talbot P (1992) Structure, distribution and composition of the extracellular matrix of human oocytes and cumulus masses. Hum Reprod 7:391–398

    Article  CAS  PubMed  Google Scholar 

  • De Jonge C, LaFromboise M, Bosmans E, Ombelet W, Cox A, Nijs M (2004) Influence of the abstinence period on human sperm quality. Fertil Steril 82:57–65

    Article  PubMed  Google Scholar 

  • Kretser DM de, Huidobro C, Southwick GJ, Temple-Smith PD (1998) The role of the epididymis in human infertility. J Reprod Fertil Suppl 53:271–275

    Google Scholar 

  • Dietzel E, Wessling J, Floehr J, Schäfer C, Ensslen S, Denecke B, Rösing B, Neulen J, Veitinger T, Spehr M, Tropartz T, Tolba R, Renné T, Egert A, Schorle H, Gottenbusch Y, Hildebrand A, Yiallouros I, Stöcker W, Weiskirchen R, Jahnen-Dechent W (2013) Fetuin-B, a liver-derived plasma protein is essential for fertilization. Dev Cell 25(1):106–112. https://doi.org/10.1016/j.devcel.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  • Dubé E, Hermo L, Chan PT, Cyr DG (2008) Alterations in gene expression in the caput epididymides of nonobstructive azoospermic men. Biol Reprod 78:342–351

    Article  PubMed  CAS  Google Scholar 

  • Flori F, Ermini L, La Sala GB, Nicoli A, Capone A, Focarelli R, Rosati F, Giovampaola CD (2008) The GPI-anchored CD52 antigen of the sperm surface interacts with semenogelin and participates in clot formation and liquefaction of human semen. Mol Reprod Dev 75:326–335

    Article  CAS  PubMed  Google Scholar 

  • Florman HM, Fissore RA (2014) Fertilization in mammals. In: Plant T, Zeleznik A (Hrsg) Knobil and Neill’s Physiology of Reproduction. Academic Press, Cambridge, Mass, S 149–196

    Google Scholar 

  • Freitas MJ, Vijayaraghavan S, Fardilha M (2017) Signaling mechanisms in mammalian sperm motility. Biol Reprod 1:2–12

    Google Scholar 

  • Gadella BM, Harrison RA (2002) Capacitation induces cyclic adenosine 3',5'-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 67:340–350

    Article  CAS  PubMed  Google Scholar 

  • Garrett C, Liu DY, Baker HW (2007) Comparison of human sperm morphometry assessment models based on zona pellucida selectivity. Soc Reprod Fertil Suppl 65:357–361

    CAS  PubMed  Google Scholar 

  • Gupta SK (2014) Unraveling the intricacies of mammalian fertilization. Asian J Androl 16:801–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK (2018) The human egg’s zona pellucida. Curr Top Dev Biol 130:379–411. https://doi.org/10.1016/bs.ctdb.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  • Halvaei I, Ghazali S, Nottola SA, Khalili MA (2018) Cleavage-stage embryo micromanipulation in the clinical setting. Syst Biol Reprod Med 64:157–168

    Article  PubMed  Google Scholar 

  • Harrison RA, Gadella BM (2005) Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology 63:342–351

    Article  CAS  PubMed  Google Scholar 

  • Hess RA, Cooke PS (2018) Estrogen in the male: a historical perspective. Biol Reprod 99(1):27–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Honda A, Siruntawinwti J, Baba T (2002) Role of acrosomal matrix proteinases in sperm-zona pellucida interactions. Hum Reprod Update 5:405–412

    Article  Google Scholar 

  • Hosseini A, Khalili MA (2017) Improvement of motility after culture of testicular spermatozoa: the effects of incubation timing and temperature. Transl Androl Urol 6:271–276. https://doi.org/10.21037/tau.2017.03.43

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin super family protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    Article  CAS  PubMed  Google Scholar 

  • Inoue N, Ikawa M, Okabe M (2011) The mechanism of sperm – egg interaction and the involvement of IZUMO1 in fusion. Asian J Androl 13:81–87

    Article  CAS  PubMed  Google Scholar 

  • Ito C, Toshimori K (2016) Acrosome markers of human sperm. Anat Sci Int 91:128–142

    Article  CAS  PubMed  Google Scholar 

  • James ER, Carrell DT, Aston KI, Jenkins TG, Yeste M, Salas-Huetos A (2020) The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. Int J Mol Sci 2921:5377

    Article  CAS  Google Scholar 

  • Johnson L, Varner DD (1988) Effect of daily sperm production but not age on transit time of spermatozoa through the human epididymis. Biol Reprod 39:812–817

    Article  CAS  PubMed  Google Scholar 

  • Jones R, James PS, Howes L, Bruckbauer A, Klenerman D (2007) Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian J Androl 9:438–444

    Article  CAS  PubMed  Google Scholar 

  • Jonsson M, Linse S, Forhm B, Lundwall A, Malm J (2005) Semenogelins I and II bind zinc and regulate the activity of prostate-specific antigen. Biochem J 387:47–453

    Article  Google Scholar 

  • Kim YH, Haidl G, Schaefer M, Egner U, Mandal A, Herr JC (2007) Compartmentalization of a unique ADP/ATP carrier protein SFED (sperm flagellar energy carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece. Dev Biol 302:463–476

    Article  CAS  PubMed  Google Scholar 

  • Kirchhoff C (2007) Human epididymis – specific gene expression. ANIR 9:25–42

    Google Scholar 

  • Kishimoto T (2005) Developmental biology: cell cycle unleashed. Nature 437:1048–1052

    Article  CAS  Google Scholar 

  • Kunz G, Beil D, Huppert P, Leyendecker G (2007) Oxytocin-a stimulator of directed sperm transport in humans. Reprod Biomed Online 14:32–39

    Article  CAS  PubMed  Google Scholar 

  • La Spina FA, Puga Molina LC, Romarowski A, Vitale AM, Falzone TL, Krapf D, Hirohashi N, Buffone MG (2016) Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev Biol 411:172–182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laurentino S, Borgmann J, Gromoll J (2016) On the origin of sperm epigenetic heterogeneity. Reproduction 151:R71–R78. https://doi.org/10.1530/REP-15-0436

    Article  CAS  PubMed  Google Scholar 

  • Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, Pavlovic B, Lenton W, Afnan M, Brewis IA, Monk M, Hughes DC, Barratt CL (2004) Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 19:1580–1586

    Article  CAS  PubMed  Google Scholar 

  • Légaré C, Thabet M, Sullivan R (2004) Expression of heat shock protein 70 in normal and cryptorchid human excurrent duct. Mol Hum Reprod 10:197–202. https://doi.org/10.1093/molehr/gah027

    Article  CAS  PubMed  Google Scholar 

  • Levitas E, Lunenfeld E, Weiss N, Friger M, Har-Vardi I, Koifman A, Potashnik G (2005) Relationship between duration of sexual abstinence and semen quality; analysis of 9,489 semen samples. Fertil Steril 83:1680–1686

    Article  PubMed  Google Scholar 

  • Lindemann CB, Lesich KA (2016) Functional anatomy of the mammalian sperm flagellum. Cytoskeleton (Hoboken) 73:652–666

    Article  CAS  Google Scholar 

  • Linge HM, Collin M, Giwercman A, Malm J, Bjartell A, Egestan A (2008) The antibacterial chemokine MIG/CXCL9 s constitutively expressed in epithelial cells of the male urogenital tract and is present in seminal plasma. J Interferon Cytokine Res 28:191–196

    Article  CAS  PubMed  Google Scholar 

  • Lishko PV, Botchkina IL, Kirichok Y (2011) Progesterone activates the principal Ca2+ channel of human sperm. Nature 471(7338):387–391

    Article  CAS  PubMed  Google Scholar 

  • Liu DY, Clarke GN, Baker HW (2005) Exposure of actin on the surface of the human sperm head during in vitro culture relates to sperm morphology, capacitation and zona binding. Hum Reprod 20:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Mao HT, Yang WX (2013) Modes of acrosin functioning during fertilization. Gene 526:75–79

    Article  CAS  PubMed  Google Scholar 

  • Marchetti C, Jouy N, Leroy-Martin B, Formstecher P, Marchetti P (2004) Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod 19:2267–2276

    Article  PubMed  Google Scholar 

  • Mitchell LA, Nixon B, Baker MA, Aitken RJ (2008) Investigation of the role of SRC in capacitation associated tyrosine phosphorylation of human spermatozoa. Mol Hum Reprod 14:235–243

    Article  CAS  PubMed  Google Scholar 

  • Moskovtsev SI, Jarvi K, Légaré C, Sullivan R, Mullen JB (2007) Epididymal P34H protein deficiency in men evaluated for infertility. Fertil Steril 88:1455–1457

    Article  PubMed  Google Scholar 

  • Navarra CS, Simerly C, Zoran S, Schatten G (1995) The sperm centrosome during fertilization in mammals: implications for fertility and reproduction. Reprod Fertil Develop 7:747–754

    Article  Google Scholar 

  • Neugebauer DC, Neuwinger J, Jockenhövel F, Nieschlag E (1990) ‚9 + 0‘ axoneme in spermatozoa and some nasal cilia of a patient with totally immotile spermatozoa associated with thickened sheath and short midpiece. Hum Reprod 5:981–986

    Article  CAS  PubMed  Google Scholar 

  • Nordhoff V (2015) How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist's view. Andrology 3:156–162. https://doi.org/10.1111/andr.286

    Article  CAS  PubMed  Google Scholar 

  • O'Neill CL, Chow S, Rosenwaks Z, Palermo GD (2018) Development of ICSI. Reproduction 156:F51–F58. https://doi.org/10.1530/REP-18-0011. Epub 2018 Apr 10

    Article  CAS  PubMed  Google Scholar 

  • Oseguera-López I, Ruiz-Díaz S, Ramos-Ibeas P, Pérez-Cerezales S (2019) Novel techniques of sperm selection for improving IVF and ICSI outcomes. Front Cell Dev Biol 7:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Overstreet JW, Hembree WC (1976) Penetration of the zona pellucida of nonliving human oocytes by human spermatozoa in vitro. Fertil Steril 27:815–831

    Article  CAS  PubMed  Google Scholar 

  • Parrington J, Arnoult C, Fissore RA (2019) The eggstraordinary story of how life begins. Mol Reprod Dev 86:4–19

    Article  CAS  PubMed  Google Scholar 

  • Pereira R, Sá R, Barros A, Sousa M (2017) Major regulatory mechanisms involved in sperm motility. Asian J Andro 19:5–14

    CAS  Google Scholar 

  • Pöllänen P, Cooper TG (1994) Immunology of the testicular excurrent ducts. J Reprod Immunol 26:167–216

    Article  PubMed  Google Scholar 

  • Primakoff P, Myles DG (2007) Cell-cell membrane fusion during mammalian fertilization. FEBS Lett 581:2174–2180

    Article  CAS  PubMed  Google Scholar 

  • Prudencio C, Seol B, Esteves SC (2010) Reproductive potential of azoospermic men undergoing intracytoplasmic sperm injection is dependent on the type of azoospermia. Fertil Steril 94(Suppl):S232–S233

    Article  Google Scholar 

  • Reichmann J, Nijmeijer B, Hossain MJ, Eguren M, Schneider I, Politi AZ, Roberti MJ, Hufnagel L, Hiiragi T, Ellenberg J (2018) Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 361(6398):189–193. https://doi.org/10.1126/science.aar7462

    Article  CAS  PubMed  Google Scholar 

  • Reiss K, Saftig P (2009) The „a disintegrin and metalloprotease“ (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137. https://doi.org/10.1016/j.semcdb.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Moreno C, Laflamme J, Frenette G, Sirard MA, Sullivan R (2008) Spermatozoa modulate epididymal cell proliferation and protein secretion in vitro. Mol Reprod Dev 75:512–520

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi VD, Donnard E, Gellatly K, Rasmussen M, Kucukural A, Yukselen O, Garber M, Sharma U, Rando OJ (2020) An atlas of cell types in the mouse epididymis and vas deferens. Elife 30:e55474. https://doi.org/10.7554/eLife.55474

    Article  Google Scholar 

  • Sathananthan AH, Ratnam SS, Ng SC, Tarín JJ, Gianaroli L, Trounson A (1996) The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 11:345–356

    Article  CAS  PubMed  Google Scholar 

  • Schiffer C, Rieger S, Brenker C, Young S, Hamzeh H, Wachten D, Tüttelmann F, Röpke A, Kaupp UB, Wang T, Wagner A, Krallmann C, Kliesch S, Fallnich C, Strünker T (2020) Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca(2+) signaling. EMBO J 17:e102363

    Google Scholar 

  • Schwarzer JU, Steinfatt H (2013) Current status of vasectomy reversal. Nat Rev Urol 10:195–205

    Article  PubMed  Google Scholar 

  • Shadan S, James PS, Howes EAJR (2004) Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 71:253–265

    Article  CAS  PubMed  Google Scholar 

  • Shefi S, Raviv G, Eisenberg ML, Weissenberg R, Jalalian L, Levron J, Band G, Turek PJ, Madgar I (2006) Posthumous sperm retrieval analysis of time interval to harvest sperm. Hum Reprod 21:2890–2893

    Article  PubMed  Google Scholar 

  • Soler C, Cooper TG (2016) Foreword to Sperm morphometrics today and tomorrow (special issue in Asian Journal of Andrology). Asian J Androl 18:815–818. https://doi.org/10.4103/1008-682X.187582

    Article  PubMed  PubMed Central  Google Scholar 

  • Soler C, Pérez-Sánchez F, Schulze H, Bergmann M, Oberpenning F, Yeung C, Cooper TG (2000) Objective evaluation of the morphology of human epididymal sperm heads. Int J Androl 23:77–84

    Article  CAS  PubMed  Google Scholar 

  • Stetina JR von, Orr-Weaver TL(2011) Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 3:a005553. https://doi.org/10.1101/cshperspect.a005553

  • Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB (2011) The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471(7338):382–386

    Article  PubMed  CAS  Google Scholar 

  • Suarez SS, Pacey AA (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12:23–37

    Article  CAS  PubMed  Google Scholar 

  • Sullivan R, Mieusset R (2016) The human epididymis: its function in sperm maturation. Hum Reprod Update 22:574–587

    Article  CAS  PubMed  Google Scholar 

  • Sullivan R, Légaré C, Villeneuve M, Foliguet B, Bissonnette F (2006) Levels of P34H, a sperm protein of epididymal origin, as a predictor of conventional in vitro fertilization outcome. Fertil Steril 85:1557–1559

    Article  PubMed  CAS  Google Scholar 

  • Sullivan R, Légaré C, Lamontagne-Proulx J, Breton S, Soulet D (2019) Revisiting structure/functions of the human epididymis. Andrology 7:748–757

    Google Scholar 

  • Sun B, Yeh J (2020) Calcium oscillatory patterns and oocyte activation during fertilization: a possible mechanism for total fertilization failure (TFF) in human in vitro fertilization? Reprod Sci 19. https://doi.org/10.1007/s43032-020-00293-5

  • Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC, Tur-Kaspa I, Eisenbach M (2005) Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod 20:761–767

    Article  CAS  PubMed  Google Scholar 

  • Tournaye H (2012) Male factor infertility and ART. Asian J Androl 14:103–108

    Article  PubMed  Google Scholar 

  • Vjugina U, Evans JP (2008) New insights into the molecular basis of mammalian sperm-egg membrane interactions. Front Biosci 13:462–476

    Article  CAS  PubMed  Google Scholar 

  • Wely M van, Barbey N, Meissner A, Repping S, Silber SJ, van Wely M, et al (2015) Live birth rates after MESA or TESE in men with obstructive azoospermia: is there a difference? Hum Reprod 30:761–766

    Google Scholar 

  • WHO (2010) WHO Laboratory manual for the examination and processing of human semen. WHO, Geneva

    Google Scholar 

  • Williams CJ (2002) Signalling mechanisms of mammalian oocyte activation. Hum Reprod Update 8:313–321

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Wong D, Lu S et al (2005) Optimal use of fresh and frozen-thawed testicular sperm for intracytoplasmic sperm injection in azoospermic patients. J Assist Reprod Genet 22:389–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeung CH, Cooper TG (2008) Potassium channels involved in human sperm volume regulation – quantitative studies at the protein and mRNA levels. Mol Reprod Dev 75:659–668

    Google Scholar 

  • Yan Y, Liu H, Zhang B, Liu R (2020) A PMMA-based microfluidic device for human sperm evaluation and screening on swimmingcCapability and swimming persistence. Micromachines (Basel) 11:793. https://doi.org/10.3390/mi11090793

    Article  Google Scholar 

  • Yanagimachi R (1994) Mammalian Fertilization. In: Knobil E, Neill JD (Hrsg) The Physiology of Reproduction, Vol. 1. Raven Press, New York, S 189–317

    Google Scholar 

  • Yelumalai S, Yeste M, Jones C, Amdani SN, Kashir J, Mounce G, Da Silva SJ, Barratt CL, McVeigh E, Coward K (2015) Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection. Fertil Steril 104:561–8.e4. https://doi.org/10.1016/j.fertnstert.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  • Yeste M, Jones C, Amdani SN, Coward K (2017) Oocyte activation and fertilisation: crucial contributors from the sperm and oocyte. Results Probl Cell Differ 59:213–239

    Article  CAS  PubMed  Google Scholar 

  • Yeung CH, Cooper TG, Bergmann M, Schulze H (1991) Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia. Am J Anat 191:261–279

    Article  CAS  PubMed  Google Scholar 

  • Yeung CH, Cooper TG, Oberpenning F, Schulze H, Nieschlag E (1993) Changes in movement characteristics of human spermatozoa along the length of the epididymis. Biol Reprod 49:274–280

    Article  CAS  PubMed  Google Scholar 

  • Yeung CH, Nashan D, Sorg C, Oberpenning F, Schulze H, Nieschlag E, Cooper TG (1994) Basal cells of the human epididymis – antigenic and ultrastructural similarities to tissue-fixed macrophages. Biol Reprod 50:917–926

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Kawano N, Yoshiike M, Yoshida M, Iwamato T, Morisawa M (2008) Physiological roles of semenogelin I and zinc in sperm motility and semen coagulation on ejaculation in humans. Mol Human Reprod 14:151–156

    Article  CAS  Google Scholar 

  • Zarintosh RJ, Cross NL (1996) Unesterified cholesterol content of human sperm regulates the response of the acrosome to the agonist, progesterone. Biol Reprod 55:19–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Nordhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nordhoff, V., Wistuba, J. (2021). Physiologie der Spermienreifung und Fertilisierung. In: Nieschlag, E., Behre, H.M., Kliesch, S., Nieschlag, S. (eds) Andrologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61904-9_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61904-9_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61904-9

  • Online ISBN: 978-3-662-61904-9

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics