Skip to main content

Hintergrund/diagnostische Grundkonzepte bei Erkrankungen des vorderen Augenabschittes

  • Chapter
  • First Online:
Entzündliche Augenerkrankungen

Zusammenfassung

Ein kurzer Blick in die Geschichte zeigt, dass bereits im alten Ägypten dem Problem entzündlicher Augenveränderungen und auch deren Behandlung besondere Beachtung gezollt wurde. Erste Berichte zur Behandlung von Wundverletzungen können bis ca. 2600 v. Chr. zurückdatiert werden. Später im sog. „Papyros Ebers“ (ca. 1500 v. Chr.) wurden bereits Behandlungen mit antientzündlich wirksamen Heilpflanzen, aber auch Wirkstoffen wie Zink, Kupfer und Antimon berichtet. Sowohl eine antientzündlich ausgerichtete Behandlung des Trachoms als auch die Bedeutung der Pupillenerweiterung bei intraokularer Entzündung waren bereits als Prinzipien erkannt worden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Entzündungszentren: dgrh.de/entzuendungszentren.html, 7 http://inflammation-at-interfaces.de/ – Homepage Exzellenzzentrum Entzündung.

Literatur

  • Abe T, Nakajima A, Matsunaga M, Sakuragi S, Komatsu M (1999) Decreased tear Lactoferrin concentration in patients with chronic hepatitis C. Br J Ophthalmol 83:684–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allgeier S et al (2011) Image reconstruction of the subbasal nerve plexus with in vivo confocal microscopy. Invest Ophthalmol Vis Sci 52(9):5022–5028

    PubMed  Google Scholar 

  • Allgeier S et al (2014) Mosaicking the subbasal nerve plexus by guided eye movements. Invest Ophthalmol Vis Sci 55(9):6082–6089

    PubMed  Google Scholar 

  • Allgeier S et al (2017) A novel approach to analyze the progression of measured corneal sub-basal nerve fiber length in continuously expanding mosaic images. Curr Eye Res 42(4):549–556

    PubMed  Google Scholar 

  • Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF). Leitlinie der Deutschen Gesellschaft für Hygiene und Mikrobiologie (DGHM) in Zusammenarbeit mit der deutschsprachigen Gesellschaft für Virologie (GfV), der Deutschen Gesellschaft zur Verhütung von Viruskrankheiten (DVV) und der Deutschen Ophthalmologischen Gesellschaft (DOG). S2-Leitlinie „Mikrobiologische Diagnostik bei Infektionen des Auges“, AWMF-Register Nr. 067/008, erstellt: 07/2011; nächste Überprüfung: 05/2016. URL: www.awmf.org

  • Austin A, Lietman T, Rose-Nussbaumer J (2017) Update on the Management of Infectious Keratitis. Ophthalmology 124(11):1678–1689. https://doi.org/10.1016/j.ophtha.2017.05.012

    Article  PubMed  Google Scholar 

  • Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1(3):141–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behrens-Baumann W (2007) Chlamydienerkrankungen des Auges – Eine kurze Übersicht. Ophthalmologe 104:28–34

    Google Scholar 

  • Behrens-Baumann W (2010) Zur klinischen Diagnose der Pilzkeratitis. Z prakt Augenheilkd 31:577–580

    Google Scholar 

  • Behring E, Kitasato S (1890) Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch Med Wochenschr 16:1113–1114

    Google Scholar 

  • Berthelot JM et al (2013) Regulatory B cells play a key role in immune system balance. Joint Bone Spine 80(1):18–22

    CAS  PubMed  Google Scholar 

  • Bignami F, Rama P, Ferrari G (2016) Substance P and its inhibition in ocular inflammation. Curr Drug Targets 17(11):1265–1274

    CAS  PubMed  Google Scholar 

  • Bock F, Maruyama K, Regenfuss B, Hos D, Steven P, Heindl LM, Cursiefen C (2013) Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res 34:89–124. https://doi.org/10.1016/j.preteyeres.2013.01.001. Epub 2013 Jan 22. PMID: 23348581

  • Bohn S et al (2018) Cellular in vivo 3D imaging of the cornea by confocal laser scanning microscopy. Biomedical Optics Express 9(6):2511–2525

    PubMed  PubMed Central  Google Scholar 

  • Boukes RJ, Boonstra A, Breebaart AC, Reits D, Glasius E, Luyendyk L, Kijlstra A (1987) Analysis of human tear protein profiles using high performance liquid chromatography (HPLC). Doc Ophthalmol 67:105–113

    CAS  PubMed  Google Scholar 

  • Brandtzaeg P (2010) Function of mucosa-associated lymphoid tissue in antibody formation. Immunol Investig 39(4–5):303–355

    CAS  Google Scholar 

  • Brasnu E, Bourcier T, Dupas B, Degorge S, Rodallec T, Laroche L et al (2007) In vivo confocal microscopy in fungal keratitis. Br JOphthalmol 91:588–591

    Google Scholar 

  • Brauer L et al (2007) Detection of surfactant proteins A and D in human tear fluid and the human lacrimal system. Invest Ophthalmol Vis Sci 48(9):3945–3953

    PubMed  Google Scholar 

  • Bron AJ, Seal DV (1986) The defences of the ocular surface. Trans Ophthalmol Soc U K 105(1):18–25

    PubMed  Google Scholar 

  • Bron AJ, de Paiva CS, Chauhan SK, Bonini S, Gabison EE, Jain S et al (2017) TFOS DEWS II pathophysiology report. Ocul Surf 15(3):438–510

    PubMed  Google Scholar 

  • Buning J et al (2006) Antigen targeting to MHC class II-enriched late endosomes in colonic epithelial cells: trafficking of luminal antigens studied in vivo in Crohn’s colitis patients. FASEB J 20(2):359–361

    PubMed  Google Scholar 

  • Carter JD, Hudson AP (2009) Reactive arthritis: clinical aspects and medical management. Infect Dis Clin N Am 35:21–44

    Google Scholar 

  • Caspi RR, Roberge FG, Chan CC, Wiggert B, Chader GJ, Rozenszajn LA, Lando Z, Nussenblatt RB (1988) A new model of autoimmune disease. Experimental autoimmune uveoretinitis induced in mice with two different retinal antigens. J Immunol 140:1490–1495

    CAS  PubMed  Google Scholar 

  • Chang VS, Dhaliwal DK, Raju L, Kowalski RP (2015) Antibiotic Resistance in the Treatment of Staphylococcus aureus Keratitis: a 20-Year Review. Cornea 34(6):698–703. https://doi.org/10.1097/ICO.0000000000000431

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheung N, Nagra P, Hammersmith K (2016) Emerging trends in contact lens-related infections. Curr Opin Ophthalmol 27(4):327–332

    PubMed  Google Scholar 

  • Chiang Y, Bassi L, Javitt J (1992) Federal budgetary costs of blindness. Milbank Q 70:319–340

    CAS  PubMed  Google Scholar 

  • Cunningham AC et al (1997) A comparison of the antigen-presenting capabilities of class II MHC-expressing human lung epithelial and endothelial cells. Immunology 91(3):458–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham ET Jr (2010) Exogenous factors influencing endogenous inflammation: what can patients do to improve control of their own uveitis? Br J Ophthalmol 94:813–814

    PubMed  Google Scholar 

  • Daniel E, Duriasamy M, Ebenezer GJ (2004) ShobhanaJob CK (2004) Elevated free tear lactoferrin levels in leprosy are associated with Type 2 reactions. Indian J Ophthalmol 52:51–56

    PubMed  Google Scholar 

  • Dartt DA (2002) Regulation of mucin and fluid secretion by conjunctival epithelial cells. Prog Retin Eye Res 21(6):555–576

    CAS  PubMed  Google Scholar 

  • De Clerck EE et al (2015) New ophthalmologic imaging techniques for detection and monitoring of neurodegenerative changes in diabetes: a systematic review. Lancet Diabetes & Endocrinol 3(8):653–663

    Google Scholar 

  • Dong Q, Brulc JM, Iovieno A, Bates B, Garoutte A, Miller D, Revanna KV, Gao X, Antonopoulos DA, Slepak VZ, Shestopalov VI (2011) Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci 52(8):5408–5413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donshik PC, Ballow M (1983) Tear immunoglobulins in giant papillary conjunctivitis induced by contact lenses. Am J Ophthalmol 96(4):460–466

    CAS  PubMed  Google Scholar 

  • Ebbell B (1939) Die altägyptische Chirurgie. Die chirurgischen Abschnitte des Papyrus. E. Smith and Papyrus Ebers. Oslo, Dybwad, 1939. In: Hirschberg J (Hrsg) The history of ophthalmology, Bd 1. Wayenborgh, Bonn

    Google Scholar 

  • Ehmke T et al (2016) In vivo nonlinear imaging of corneal structures with special focus on BALB/c and streptozotocin-diabetic Thy1-YFP mice. Exp Eye Res 146:137–144

    CAS  PubMed  Google Scholar 

  • Ehrlich P, Morgenroth J (1904) Wirkung und Entstehung der aktiven Stoffe im Serum nach der Seitenkettentheorie. Handbuch der pathogenen Mikroorganismen 1:430–451

    Google Scholar 

  • Elschnig A (1910) Studien zur sympathischen Ophthalmie. Die antigene Wirkung des Augenpigmentes. Graefes Arch Clin Exp Ophthalmol 76:509–546

    Google Scholar 

  • Flagagan JL, Willcox MDP (2009) Role of lactoferrin in the tear film. Biochemie 91:35–43

    Google Scholar 

  • Gao N, Lee P, Yu FS (2016) Intraepithelial dendritic cells and sensory nerves are structurally associated and functional interdependent in the cornea. Sci Rep 6:36414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Hirschfeld J, Lopez-Briones LG, Belmonte C (1994) Neurotrophic influences on corneal epithelial cells. Exp Eye Res 59(5):597–605

    CAS  PubMed  Google Scholar 

  • Garg P (2012) Fungal, Mycobacterial, and Nocardia infections and the eye: an update. Eye (Lond) 26:245–251

    CAS  Google Scholar 

  • Garreis F, Gottschalt M, Paulsen FP (2010) Antimicrobial peptides as a major part of the innate immune defense at the ocular surface. Dev Ophthalmol 45:16–22

    PubMed  Google Scholar 

  • Gehlsen U, Huttmann G, Steven P (2010) ntravital multidimensional real-time imaging of the conjunctival immune system. Dev Ophthalmol 45:40–48

    CAS  PubMed  Google Scholar 

  • Gordon D (1956) Prednisone and prednisolone in ocular inflammatory disease. Am J Ophthalmol 41:593–600. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature; 256:495–497

    CAS  PubMed  Google Scholar 

  • Guthoff RF, Zhivov A, Stachs O (2009) In vivo confocal microscopy, an inner vision of the cornea – a major review. Clin Exp Ophthalmol 37:100–117

    Google Scholar 

  • Guzman M, Miglio MS, Zgajnar NR, Colado A, Almejun MB, Keitelman IA et al (2018) The mucosal surfaces of both eyes are immunologically linked by a neurogenic inflammatory reflex involving TRPV1 and substance P. Mucosal Immunol 11(5):1441–1453

    CAS  PubMed  Google Scholar 

  • Guzman-Aranguez A, Argueso P (2010) Structure and biological roles of mucin-type O-glycans at the ocular surface. Ocul Surf 8(1):8–17

    PubMed  PubMed Central  Google Scholar 

  • H E, Hotta F, Kuwahara T, Imaohji H, Miyazaki C, Hirose M, Kusaka S, Fukuda M, Shimomura Y (2017) Diagnostic approach to ocular infections using various techniques from conventional culture to next-generation sequencing analysis. Cornea 36(Suppl 1):S46–S52. https://doi.org/10.1097/ICO.0000000000001338

    Article  Google Scholar 

  • Hassell JR, Birk DE (2010) The molecular basis of corneal transparency. ExpEye Res 91:326–335

    CAS  Google Scholar 

  • Hovakimyan M, Guthoff R, Reichard M, Wree A, Nolte I, Stachs O (2001) In vivo confocal laser-scanning microscopy to characterize wound repair in rabbit corneas after collagen cross-linking. Clin Experiment Ophthalmol 39:899–909

    Google Scholar 

  • Hovakimyan M, Guthoff RF, Stachs O (2012) Collagen cross-linking: current status and future directions. J Ophthalmol 2012:406850

    PubMed  PubMed Central  Google Scholar 

  • Hovakimyan M et al (2014) Morphological analysis of quiescent and activated keratocytes: a review of ex vivo and in vivo findings. Curr Eye Res 39(12):1129–1144

    PubMed  Google Scholar 

  • Huang Z, Du CX, Pan XD (2018) The use of in-strip digestion for fast proteomic analysis on tear fluid from dry eye patients. PLoS One. 13(8):e0200702

    PubMed  PubMed Central  Google Scholar 

  • Hussain M, Shtein RM, Pistilli M, Maguire MG, Oydanich M, Asbell PA, DREAM Study Research Group (2020) The Dry Eye Assessment and Management (DREAM) extension study - A randomized clinical trial of withdrawal of supplementation with omega-3 fatty acid in patients with dry eye disease. Ocul Surf 18(1):47–55. https://doi.org/10.1016/j.jtos.2019.08.002. Epub 2019 Aug 16. PMID: 31425752; PMCID: PMC7004875

  • Jump RL, Levine AD (2002) Murine Peyer’s patches favor development of an IL-10-secreting, regulatory T cell population. J Immunol 168(12):6113–6119

    CAS  PubMed  Google Scholar 

  • Kalyana Chakravarthy S, Jayasudha R, Ranjith K, Dutta A, Pinna NK, Mande SS, Sharma S, Garg P, Murthy SI, Shivaji S (2018) Alterations in the gut bacterial microbiome in fungal Keratitis patients. PLoS One 13(6):e0199640. eCollection 2018. https://doi.org/10.1371/journal.pone.0199640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kijlstra A, Jeurissen SH, Koning KM (1993) Lactoferrin levels in normal human tears. Br J Ophthalmol 67:199–202

    Google Scholar 

  • Knappe S, Stachs O, Zhivov A, Hovakimyan M, Guthoff R (2011) Results of confocal microscopy examinations after collagen cross-linking with riboflavin and UVA light in patients with progressive keratoconus. Ophthalmologica 225:95–104

    CAS  PubMed  Google Scholar 

  • Köhler B et al (2014) Large-scale imaging of corneal nerve fibres by guided eye movements. Klinische Monatsblatter fur Augenheilkunde 231(12):1170–1173

    PubMed  Google Scholar 

  • Krüger A et al (2011) Combined nonlinear and femtosecond confocal laser-scanning microscopy of rabbit corneas after photochemical cross-linking. Invest Ophthalmol Vis Sci 52(7):4247–4255

    PubMed  Google Scholar 

  • Labbé A et al (2006) Comparative anatomy of laboratory animal corneas with a new-generation high-resolution in vivo confocal microscope. Curr Eye Res 31(6):501–509

    PubMed  Google Scholar 

  • Labbe A, Liang H, Martin C, Brignole-Baudouin F, Warnet JM, Baudouin C (2006) Comparative anatomy of laboratory animal corneas with a new-generation high-resolution in vivo confocal microscope. CurrEye Res 31:501–509

    Google Scholar 

  • Labbe A, Khammari C, Dupas B, Gabison E, Brasnu E, Labetoulle M et al (2009) Contribution of in vivo confocal microscopy to the diagnosis and management of infectious keratitis. OculSurf 7:41–52

    Google Scholar 

  • Leckelt J, Guimarães P, Kott A, Ruggeri A, Stachs O, Baltrusch S (2016) Early detection of diabetic neuropathy by investigating CNFL and IENFD in thy1-YFP mice. J Endocrinol 231(2):147–157. https://doi.org/10.1530/JOE-16-0284. Epub 2016 Sep 6. PMID: 27601446

  • Leistikow L (1880) Über Bakterien bei den venerischen Krankheiten. Charité Ann 7:750–754

    Google Scholar 

  • Leppin K et al (2014) Diabetes mellitus leads to accumulation of dendritic cells and nerve fiber damage of the subbasal nerve plexus in the cornea. Invest Ophthalmol Vis Sci 55(6):3603–3615

    PubMed  Google Scholar 

  • Li J, Jester JV, Cavanagh HD, Black TD, Petroll WM (2000) On-line 3-dimensional confocal imaging in vivo. Invest Ophthalmol VisSci 41:2945–2953

    CAS  Google Scholar 

  • Li J, Shen J, Beuerman RW (2007) Expression of toll-like receptors in human limbal and conjunctival epithelial cells. Mol Vis 13:813–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liekfeld A, Schweig F, Jaeckel C, Wernecke KD, Hartmann C, Pleyer U (2000) Intraocular antibody production in intraocular inflammation. Graefes Arch Clin Exp Ophthalmol 238:222–227

    CAS  PubMed  Google Scholar 

  • Lovblom LE et al (2015) In vivo corneal confocal microscopy and prediction of future-incident neuropathy in type 1 diabetes: a preliminary longitudinal analysis. Can J Diabetes 39(5):390–397

    PubMed  Google Scholar 

  • MacKenzie W (1830) A practical treatise on the diseases of the eye. Longman, Rees, Orme, Brown & Green, London, S 422–457

    Google Scholar 

  • Mackie IA, Seal DV (1984) Diagnostic implications of tear protein profiles. Br J Ophthalmol 68:321–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masters BR, Bohnke M (2001) Three-dimensional confocal microscopy of the human cornea in vivo. Ophthalmic Res 33:125–135

    CAS  PubMed  Google Scholar 

  • Masters BR, Bohnke M (2002) Three-dimensional confocal microscopy of the living human eye. Annu Rev Biomed Eng 4:69–91

    CAS  PubMed  Google Scholar 

  • Masters BR, Farmer MA (1993) Three-dimensional confocal microscopy and visualization of the in situ cornea. Comput Med Imaging Graph 17:211–219

    CAS  PubMed  Google Scholar 

  • Medawar PB (1944) The behaviour and fate of skin autografts and skin homografts in rabbits. J Anat 78:176–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messmer EM (2012) In vivo confocal microscopy – correlation to histology. Klin Monbl Augenheilkd 229:696–704

    Google Scholar 

  • Messmer EM, Mackert MJ, Zapp DM, Kampik A (2006) In vivo confocal microscopy of normal conjunctiva and conjunctivitis. Cornea 25:781–788

    PubMed  Google Scholar 

  • Michael E, Zegans ME, Van Gelder RN (2014) Considerations in understanding the ocular surface microbiome. Am J Ophthalmol 158(3):420–422

    Google Scholar 

  • Mudgil P (2014) Antimicrobial role of human meibomian lipids at the ocular surface. Invest Ophthalmol Vis Sci 55(11):7272–7277

    CAS  PubMed  Google Scholar 

  • Newell FW, Krill AE (1967) Treatment of uveitis with azathioprine (Imuran). Trans Ophthalmol Soc UK 87:499–511

    CAS  PubMed  Google Scholar 

  • Nussenblatt RB, Palestine AG, Rook AH (1983) Treatment of intraocular inflammation with Cyclosporine A. Lancet 1:235–238

    Google Scholar 

  • O’Callaghan RJ (2018) The Pathogenesis of Staphylococcus aureus Eye Infections. Pathogens 7(1):9. https://doi.org/10.3390/pathogens7010009. PMID: 29320451; PMCID: PMC5874735

  • Ortho Multicenter Transplant Study Group (1985) A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N Engl J Med 8(313):337–342

    Google Scholar 

  • Osterlind G (1944) An investigation into the presence of lymphatic tissue in the human conjunctiva, and its biological and clinical importance. Acta Ophthalmol 23:1–79

    Google Scholar 

  • Patel DV, McGhee CN (2006) Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy. Invest Ophthalmol VisSci 47:1348–1351

    Google Scholar 

  • Patel DV, McGhee CN (2007) Contemporary in vivo confocal microscopy of the living human cornea using white light and laser scanning techniques: a major review. Clin Exp Ophthalmol 35:71–88

    PubMed  Google Scholar 

  • Paulsen FP, Berry MS (2006) Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem 41(1):1–53

    CAS  PubMed  Google Scholar 

  • Paulsen FP et al (2008) Intestinal trefoil factor/TFF3 promotes re-epithelialization of corneal wounds. J Biol Chem 283(19):13418–13427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petroll WM, Yu A, Li J, Jester JV, Cavanagh HD, Black T (2002) A prototype two-detector confocal microscope for in vivo corneal imaging. Scanning 24:163–170

    PubMed  Google Scholar 

  • Petroll WM et al (2013) Quantitative 3-D corneal imaging in vivo using a modified HRT-RCM confocal microscope. Cornea 32(4):e36

    PubMed  PubMed Central  Google Scholar 

  • Petropoulos IN et al (2017) Corneal confocal microscopy: an imaging endpoint for axonal degeneration in multiple sclerosis. Invest Ophthalmol Vis Sci 58(9):3677–3681

    PubMed  Google Scholar 

  • Pleyer U, Behrens-Baumann W (2007) Bakterielle Keratitis – Aktuelle Aspekte zur Diagnostik. Ophthalmologe 104:9–14

    Google Scholar 

  • Poletti E et al (2014) Automatic montaging of corneal sub-basal nerve images for the composition of a wide-range mosaic. in Engineering in Medicine and Biology Society (EMBC) 36th annual international conference of the IEEE. 2014. IEEE

    Google Scholar 

  • Reichard M, Hovakimyan M, Wree A, Meyer-Lindenberg A, Nolte I, Junghans C et al (2010) Comparative in vivo confocal microscopical study of the cornea anatomy of different laboratory animals. CurrEye Res 35:1072–1080

    Google Scholar 

  • Robert PY, Liekfeld A, Metzner S, Ranger-Rogez S, Adenis JP, Denis F, Hartmann C, Pleyer U (2006) Specific antibody production in herpes keratitis: intraocular inflammation and corneal neovascularisation as predicting factors. Graefes Arch Clin Exp Ophthalmol 244:210–215

    PubMed  Google Scholar 

  • Scarpa F, Fiorin D, Ruggeri A (2007) In vivo three-dimensional reconstruction of the cornea from confocal microscopy images. Conf Proc IEEE Eng Med Biol Soc 2007:747–750

    Google Scholar 

  • Siebelmann S et al (2010) Development and antigen-related modulation of conjunctiva-associated lymphoid tissue (CALT), in World Ophthalmology Congress2010: Berlin

    Google Scholar 

  • Sonntag HG (2002) Sampling and transport of specimens for microbial diagnosis of ocular infections. Dev Ophtahlmol 33:362–367

    CAS  Google Scholar 

  • Stachs O, Zhivov A, Kraak R, Stave J, Guthoff R (2007) In vivo three-dimensional confocal laser scanning microscopy of the epithelial nerve structure in the human cornea. Graefes Arch Clin Exp Ophthalmol 245:569–575

    PubMed  Google Scholar 

  • Stern ME, Gao J, Siemasko KF, Beuerman RW, Pflugfelder SC (2004) The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res 78(3):409–416

    CAS  PubMed  Google Scholar 

  • Steven P, Cursiefen C (2012) Anti-inflammatory treatment in dry eye disease. Klin Monatsbl Augenheilkd 229(5):500–505

    CAS  PubMed  Google Scholar 

  • Steven P, Gebert A (2009) Conjunctiva-associated lymphoid tissue – current knowledge, animal models and experimental prospects. Ophthalmic Res 42(1):2–8

    Google Scholar 

  • Steven P et al (2004) Distribution of TFF peptides in corneal disease and pterygium. Peptides 25(5):819–825

    CAS  PubMed  Google Scholar 

  • Streilein JW (1996) Ocular immune privilege and the Faustian dilemma. Proctor Lecture Invest Ophthalmol Vis Sci 37:1940–1942

    CAS  PubMed  Google Scholar 

  • Tahmaz V, Radojska S, Cursiefen C, Gathof B, Steven P (2017) SOP Autologe Serumaugentropfen - Indikation, Herstellung, Anwendung. Augenheilkunde up2date 7(01):10–14

    Google Scholar 

  • Tewary P et al (2010) Granulysin activates antigen-presenting cells through TLR4 and acts as an immune alarmin. Blood 116(18):3465–3474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teweldemedhin M, Gebreyesus H, Atsbaha AH, Asgedom SW, Saravanan M (2017) Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol 17(1):212. https://doi.org/10.1186/s12886-017-0612-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsung PK, Hong BS, Holly FJ, Gordon W Jr (1983) Decrease of lactoferrin concentration in the tears of myotonic muscular dystrophy patients. Clin Chim Acta 134:213–219

    CAS  PubMed  Google Scholar 

  • Ung L, PJM B, Shanbhag SS, Gilmore MS, Chodosh J (2019) The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Surv Ophthalmol 64(3):255–271. https://doi.org/10.1016/j.survophthal.2018.12.003

    Article  PubMed  Google Scholar 

  • Von Goldmann H, Witmer R (1954) Antikörper im Kammerwasser. Ophthalmologica 127:323

    CAS  PubMed  Google Scholar 

  • Von Szily A (1914) Die Anaphylaxie in der Augenheilkunde. Enke, Stuttgart

    Google Scholar 

  • Webb RH, Hughes GH, Delori FC (1987) Confocal scanning laser ophthalmoscope. Appl Opt 26(8):1492–1499

    CAS  PubMed  Google Scholar 

  • Wessely K (1911) Ueber anapyhlaktische Erscheinungen an der Hornhaut (Experimentelle Erzeugung einer parenchymatösen Keratitis durch artfremdes Serum). Muench Med Wochenschr 58:1713–1714

    Google Scholar 

  • Willcox MDP, Argueso P, Georgiev GA, Holopainen JM, Laurie GW, Millar TJ et al (2017) TFOS DEWS II tear film report. Ocul Surf 15(3):366–403

    PubMed  PubMed Central  Google Scholar 

  • Winter K et al (2016) Local variability of parameters for characterization of the corneal subbasal nerve plexus. Curr Eye Res 41(2):186–198

    PubMed  Google Scholar 

  • Wong VG, Hersh EM (1965) Methotrexate in the therapy of cyclitis. Trans Am Acad Ophthalmol Otolaryngol 69:279–293

    Google Scholar 

  • Wright JR (2004) Host defense functions of pulmonary surfactant. Biol Neonate 85(4):326–332

    CAS  PubMed  Google Scholar 

  • Yu FS, Hazlett LD (2006) Toll-like receptors and the eye. Invest Ophthalmol Vis Sci 47(4):1255–1263

    PubMed  Google Scholar 

  • Zhivov A, Stachs O, Kraak R, Stave J, Guthoff RF (2006) In vivo confocal microscopy of the ocular surface. Ocul Surf 4:81–93

    PubMed  Google Scholar 

  • Zhivov A, Stachs O, Kraak R, Guthoff R (2008) Cellular laser microscopy of corneal ulcer and infiltrate. Klin Monbl Augenheilkd 225:86–90

    CAS  PubMed  Google Scholar 

  • Zhivov A, Guthoff R, Stachs O (2009a) On-line mapping of corneal structures with in vivo laser scanning microscopy. Klin Monbl Augenheilkd 226:980–983

    CAS  PubMed  Google Scholar 

  • Zhivov A, Stachs O, Stave J, Guthoff RF (2009b) In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium. Br J Ophthalmol 93:667–672

    CAS  PubMed  Google Scholar 

  • Zhivov A, Blum M, Guthoff R, Stachs O (2010a) Real-time mapping of the subepithelial nerve plexus by in vivo confocal laser scanning microscopy. Br J Ophthalmol 94:1133–1135

    PubMed  Google Scholar 

  • Zhivov A, Guthoff RF, Stachs O (2010b) In vivo confocal microscopy of the ocular surface: from bench to bedside and back again. Br J Ophthalmol 94:1557–1558

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Pleyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pleyer, U. et al. (2021). Hintergrund/diagnostische Grundkonzepte bei Erkrankungen des vorderen Augenabschittes. In: Pleyer, U. (eds) Entzündliche Augenerkrankungen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60399-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60399-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60398-7

  • Online ISBN: 978-3-662-60399-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics