Skip to main content

Insektenbiotechnologie

Insekten als Ressource

  • Chapter
Biologische Transformation
  • 4708 Accesses

Zusammenfassung

Unter Insektenbiotechnologie versteht man die Entwicklung und Anwendung von biotechnologischen Methoden, um Insekten bzw. von diesen stammende Moleküle, Zellen, Organe oder assoziierte Mikroorganismen als Produkte oder Dienstleistungen für Anwendungen in der Medizin, im Pflanzenschutz oder in der Industrie nutzbar zu machen. Dieses auch als Gelbe Biotechnologie bekannt gewordene „Emerging Field“ verfolgt konsequent transnationale Forschungsansätze mit beachtlichen Wertschöpfungspotenzialen. Der Institutsteil Bioressourcen im Fraunhofer Institut für Molekularbiologie und Angewandte Ökologie (IME) gehört zu den weltweit führenden Forschungseinrichtungen in der Insektenbiotechnologie. Hier werden Technologie-Plattformen etabliert, mit denen systematisch Naturstoffe und Enzyme aus Insekten identifiziert, charakterisiert und einer Nutzung zugänglich gemacht werden. Weiterhin werden dort innovative Technologien für die Nutzung von Insekten zur Biokonversion von organischen Abfällen in wertvolle Rohstoffe erarbeitet. Darüber hinaus werden am Gießener Fraunhofer-Standort biologische und biotechnische Verfahren zur nachhaltigen und umweltschonenden Kontrolle von Schadund Vektorinsekten entwickelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Quellen und Literatur

  1. Vilcinskas A. (Hrsg) (2011) Insect Biotechnology. Springer, Dordrecht

    Google Scholar 

  2. Vilcinskas A (Hrsg) (2013) Yellow Biotechnology I (Insect Biotechnology in Drug Discovery and Preclinical Research). Springer Series: Advances in Biochemical Engineering and Biotechnology. Springer, Berlin

    Google Scholar 

  3. Vilcinskas A (Hrsg) (2013) Yellow Biotechnology II (Insect Biotechnology in Plant Protection and Industry). Springer Series: Advances in Biochemical Engineering and Biotechnology. Springer, Berlin

    Google Scholar 

  4. Schreiber C, Müller H, Birrenbach O, Klein M, Heerd D, Weidner T, Salzig D, Czermak P (2017) A high-throughput expression screening platform to optimize the production of antimicrobial peptides. Microbial Cell Factories 16(1):29

    Google Scholar 

  5. Zitzmann J, C Schreiber, J Eichmann, R O Bilz, D Salzig, T Weidner, P Czermak (2018) Single-cell cloning enables the selection of highly productive Drosophila melanogaster S2 cells for recombinant protein expression. 2018 Biotechnology Reports 19:e00272

    Google Scholar 

  6. Maura D, Ballok A. E, Rahme, L. G. (2016) Considerations and caveats in anti-virulence drug development. Current Opinion in Microbiology 33:41–46

    Google Scholar 

  7. Adekoya O, Sylte I. (2009) The thermolysin family (M4) of enzymes: Therapeutic and biotechnological potential. Chemical Biology and Drug Design 73(1):7–16

    Google Scholar 

  8. Clermont, A., M. Wedde, V. Seitz, L. Podsiadlowski, M. Hummel, A. Vilcinskas (2004) Cloning and expression of an inhibitor against microbial metalloproteinases from insects (IMPI) contributing to innate immunity. Biochemical Journal 382:315–322

    Google Scholar 

  9. Degenkolb T, Düring R-A, Vilcinskas A (2011) Secondary metabolites released by the burying beetle Nicrophorus vespilloides: Chemical analyses and possible ecological functions. Journal of Chemical Ecology 37(7):724–735

    Google Scholar 

  10. Vogel H, Shukla S, Engl T, Weiss B, Fischer R, Steiger S, Heckel D, Kaltenpoth M, Vilcinskas A (2017) The digestive and defensive basis of carcass utilization by the burying beetle and its microbiota. Nature Communications 8:15186

    Google Scholar 

  11. van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible Insects – Future prospects for food and feed security. FAO Forestry Paper 171

    Google Scholar 

  12. Vogel H, Müller A, Heckel DG, Gutzeit H, Vilcinskas A (2018) Nutritional immunology: Diversification and diet-dependent expression of antimicrobial peptides in the Black soldier fly Hermetia illucens. Developmental and Comparative Immunology 78, 141–148

    Google Scholar 

  13. Müller A, Wolf D, Gutzeit H (2017) The black soldier fly Hermetia illucens – a promising source for sustainable production of proteins, lipids and bioactive substances. Zeitschrift für Naturforschung C 72(9–10):351–363

    Google Scholar 

  14. Grau T, Vilcinskas A, Joop G (2017) Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift für Naturforschung C 72(9–10):337–349

    Google Scholar 

  15. Schetelig M, Lee KZ, Fischer S, Talmann L, Stökl J, Degenkolb T, Vilcinskas A, Halitschke R (2018) Environmentally sustainable pest control options for Drosophila suzukii. Journal of Applied Entomology 142:3–17

    Google Scholar 

  16. Knorr E, Bingsohn L, Kanost M, Vilcinskas A (2013) Tribolium castaneum as a model for high-thoughput RNAi screening. Advances in Biochemical Engineering and Biotechnology 136:163–178

    Google Scholar 

  17. Knorr E, Fishilevich E, Bingsohn L, Frey M, Rangasamy M, Billion A, Worden S, Gandra P, Arora K, Lo W, Schulenberg G, Valverde P, Vilcinskas A, Narva KE (2018) Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Scientific Reports 8:2061

    Google Scholar 

  18. Schetelig M, Targovska A, Meza J, Bourtzis K, Handler AM (2016) Tetracycline-suppressible female lethality and sterility in the Mexican fruit fly Anastrepha ludens. Insect Molecular Biology 25(4):500–508

    Google Scholar 

  19. WHO Fact sheet N°310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Vilcinskas, A. (2019). Insektenbiotechnologie. In: Neugebauer, R. (eds) Biologische Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58243-5_13

Download citation

Publish with us

Policies and ethics