Skip to main content

Parental Origin Determination FISH: Pod-FISH

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 3267 Accesses

Abstract

Except for individuals with variations in the pericentric heterochromatic chromosomal regions (including acrocentric short arms), a distinction of homologue chromosomes on a single-cell level is not possible. Due to this limitation, various questions of scientific and diagnostic relevance could not be studied by now. Based on copy number variations (CNV) spanning up to several megabasepair of DNA, we developed a molecular cytogenetic approach for an interindividual differentiation of homologue chromosomes, the so-called parental origin determination FISH (pod-FISH) technique. For this, all human chromosomes were covered with CNV-spanning BAC-probes in one- up to five-color chromosome-specific pod-FISH sets. With this approach to study the parental origin of individual human chromosomes on a single-cell level, new horizons for diagnostics and basic research were opened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee C (2005) Vive la difference! Nat Genet 37:660–661

    Article  CAS  PubMed  Google Scholar 

  2. Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  Google Scholar 

  3. Liehr T, Nietzel A, Starke H et al (2003) Characterization of small marker chromosomes (SMC) by recently developed molecular cytogenetic approaches. J Assoc Genet Technol 29:5–10

    PubMed  Google Scholar 

  4. Nietzel A, Albrecht B, Starke H et al (2003) Partial hexasomy 15pter–>15q13 including SNRPN and D15S10: first molecular cytogenetically proven case report. J Med Genet 40:e28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Müller H, Klinger HP, Glasser M (1975) Chromosome polymorphism in a human newborn population II: potentials of polymorphic chromosome variants for characterizing the idiogram of an individual. Cytogenet Cell Genet 15:239–255

    Article  PubMed  Google Scholar 

  6. Liehr T (2014) Benign & pathological chromosomal imbalances, 1st edition microscopic and submicroscopic copy number variations (CNVs) in genetics and counseling. Academic Press, New York

    Google Scholar 

  7. Iafrate AJ, Feuk L, Rivera MN et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951

    Article  CAS  PubMed  Google Scholar 

  8. Sebat J, Lakshmi B, Troge J et al (2004) Large-scale copy number polymorphism in the human genome. Science 23:525–528

    Article  Google Scholar 

  9. Shaw-Smith C, Redon R, Rickman L et al (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharp AJ, Locke DP, McGrath SD et al (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77:78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tuzun E, Sharp AJ, Bailey JA et al (2005) Fine-scale structural variation of the human genome. Nat Genet 37:727–732

    Article  CAS  PubMed  Google Scholar 

  12. Weise A, Gross M, Mrasek K et al (2008) Parental-origin-determination fluorescence in situ hybridization distinguishes homologous human chromosomes on a single-cell level. Int J Mol Med 21:189–200

    CAS  PubMed  Google Scholar 

  13. Weise A, Bhatt S, Piaszinski K et al (2016) Chromosomes in a genome-wise order: evidence for metaphase architecture. Mol Cytogenet 9:36

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Weise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Weise, A., Liehr, T. (2017). Parental Origin Determination FISH: Pod-FISH. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics