Skip to main content

Embryology of the Head and Neck

  • Living reference work entry
  • First Online:
Pediatric Neuroradiology
  • 776 Accesses

Abstract

The region of the head and neck is complex according to its anatomy. Its development is particularly difficult to unravel because many interactions are playing important roles, these processes are only beginning to be revealed. It is easy to split this chapter into four: vault, base of the skull, face and neck. The bone forming the vault of the skull derive from membranous ossification. The different bones of the vault are derived either from neural crest or mesoderm. These bones are being established gradually receiving information of the neural tube, the surface ectoderm and the dura. The area separating two bones constitutes the suture, a real organ whose anomaly leads to the formation of various craniosynostosis. The main genes explaining human craniosynostosis are MSX, FGF receptors, TWIST and EphA4. Skull base follows endochondral ossification. Schematically one can distinguish three regions: prechordal area, chordal region and otic capsule. Sonic hedgehog is a morphogen very involved in the formation of the skull base. The otic capsule is directly induced by the otic vesicle. Finally, the regulation of the supra-occipital is radically different from the rest of the base. The face results from merging of five buds (a frontonasal, two maxillary and two mandibular). The interactions playing a role in the development of the face are just beginning to be elucidated. Nerve and sensory structures (optic vesicle and olfactory mucosa) have a major role in these processes. Neck results from the formation and evolution of branchial arches. These arches are made of endoderm, mesoderm, mesectoderm and surface ectoderm. Many molecules account for the interactions between these tissues that are necessary to build normal anatomical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ. Bmp4 and morphological variation of beaks in Darwin’s finches. Science. 2004;305:1462–5.

    Article  CAS  PubMed  Google Scholar 

  • Acampora D, Merlo G, Paleari L, Zerega B, Mantero S, Barbieri O, Postiglione MP, Simeone A, Levi G. Craniofacial, vestibular and bone defects in mice lacking the distal-less related gene Dlx5. Development. 1999;126:3795–809.

    CAS  PubMed  Google Scholar 

  • Ahlgren SC, Bronner-Fraser M. Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr Biol. 1999;9:1304–14.

    Article  CAS  PubMed  Google Scholar 

  • Arnold WH, Meiselbch V. 3-D reconstruction of a human fetus with combined holoprosencephaly and cyclopia. Head Face Med. 2009;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold WH, Sperber GH, Machin GA. Cranio-facial skeletal development in three human synophtalmic holoprosencephalic fetuses. Anat Anz. 1988;180:45–53.

    Article  Google Scholar 

  • Bach-Petersen S, Kjaer I. Ossification of the lateral components in the human prenatal cranial base. J Craniofac Genet Dev Biol. 1993;13:76–82.

    CAS  PubMed  Google Scholar 

  • Balczerski B, Zakaria S, Tucker AS, Borycki AG, Koyama E, Pacifici M, Francis-West P. Distinct spatiotemporal roles of hedgehog signalling during chick and mouse cranial base and axial skeleton development. Dev Biol. 2012;371:203–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batteson W. Materials for the study of variation treated with especial regard to discontinuity in the origin of species. London: MacMillan and Co; 1894.

    Book  Google Scholar 

  • Brito JM, Teillet MA, Le Douarin NM. An early role for sonic hedgehog from foregut endoderm in jaw development: ensuring neural crest cell survival. Proc Natl Acad Sci U S A. 2006;103:11607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugmann SA, Allen NC, James AW, Mekonnen Z, Madan E, Helms JA. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet. 2010;19:1577–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannistrá C, Barbet P, Parisi P, Iannetti G. Cycloipia: a radiological and anatomical post mortem study. J Craniomaxillofac Surg. 2001;29:150–5.

    Article  PubMed  Google Scholar 

  • Carrasco AE, McGinnis W, Gehring WJ, De Robertis EM. Cloning of an X laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell. 1984;37:409–14.

    Article  CAS  PubMed  Google Scholar 

  • Chang W, ten Dijke P, Wu DK. BMP pathways are involved in the otic capsule formation and epithelial-mesenchymal signaling in the developing chicken inner ear. Dev Biol. 2002;251:380–94.

    Article  CAS  PubMed  Google Scholar 

  • Chareonvit S, Osumi-Yamashita N, Ikeda M, Eto K. Murine forebrain and midbrain crest cells generate different characteristic derivatives in vitro. Dev Growth Differ. 1997;39:493–503.

    Article  CAS  PubMed  Google Scholar 

  • Clouthier DE, Hosoda K, Richardson JA, Williams C, Yanasigawa H, Kuwaki T, Kumada M, Hammer RE, Yanasigawa M. Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development. 1998;125:813–24.

    CAS  PubMed  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development. 1993;117:409–29.

    CAS  PubMed  Google Scholar 

  • Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin NM. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development. 1998;125:3445–59.

    CAS  PubMed  Google Scholar 

  • Couly G, Creuzet S, Bennaceur S, Vincent C, Le Douarin NM. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development. 2002;129:1061–73.

    CAS  PubMed  Google Scholar 

  • Day TF, Guo Xn Garrett-Beal L, Yang Y. Wnt/β-catenin signalling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8:739–50.

    Article  CAS  PubMed  Google Scholar 

  • Deckelbaum RA, Holmes G, Zhao Z, Tong C, Basilico C, Loomis CA. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development. 2012;139:1346–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dee CT, Szymoniuk CR, Mills PE, Takahashi T. Defective neural crest migration revealed by a Zebrafish model of Alx1- related frontonasal dysplasia. Hum Mol Genet. 2013;22:239–51.

    Article  CAS  PubMed  Google Scholar 

  • Depew MJ, Liu JK, Long JE, Presley R, Meneses JJ, Pedersen R, Rubenstein JLR. Dlx5 regulates regional development of the branchial arches and sensory capsules. Development. 1999;126:3831–46.

    CAS  PubMed  Google Scholar 

  • Depew MJ, Lufkin T, Rubenstein JLR. Specification of jaw subdivisions by Dlx genes. Science. 2002;298:381–5.

    Article  CAS  PubMed  Google Scholar 

  • Edlund RK, Ohyama T, Kantarci H, Riley BB, Groves AK. Foxi transcription factors promote pharungeal arch development by regulating formation of FGF signaling centers. Dev Biol. 2014;390:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D, Bourgeois P, Bolcato-Bellemin AL, Munnich A, Bonnaventure J. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet. 1997;15:42–6.

    Article  PubMed  Google Scholar 

  • Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development. 2002;129:3783–93.

    CAS  PubMed  Google Scholar 

  • Evans DJR, Noden DM. Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn. 2006;235:1310–25.

    Article  PubMed  Google Scholar 

  • Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell interactions regulating mandibular and maxillary arch patterning. Development. 2000;127:403–12.

    CAS  PubMed  Google Scholar 

  • Foppiano S, Hu D, Marcucio RS. Signaling by bone morphogenetic proteins directs formation of an ectodermal signalling center that regulates craniofacial development. Dev Biol. 2007;312:103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis-West P, Ladher R, Barlow A, Graveson A. Signalling interactions during facial development. Mech Dev. 1998;75:3–28.

    Article  CAS  PubMed  Google Scholar 

  • Frenz DV, Van de Water TR. Epithelial control of periotoic mesenchyme chondrogenesis. Dev Biol. 1991;144:38–46.

    Article  CAS  PubMed  Google Scholar 

  • Gailani MR, Bale SJ, Leffell DJ, Di Giovanna JJ, Peck GL, Poliak S, Drum MA, Pastakia B, McBride OW, Kase R, Greene M, Mulvihill JJ, Bale AE. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell. 1992;69:111–7.

    Article  CAS  PubMed  Google Scholar 

  • Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet. 1996;14:78–81.

    Article  CAS  PubMed  Google Scholar 

  • Galvin BD, Hart KC, Meyer AN, Webster MK, Donoghue DJ. Constitutive receptor activation by Crouzon syndrome mutations in fibroblast growth factor receptor (FGFR)2 and FGFR2/Neu chimeras. Proc Natl Acad Sci U S A. 1996;93:7894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garabedian EN, Ducroz V, Roger G, Denoyelle F, Catala M. Nasal fossa malformations and paramedian facial cleft: new perspectives. J Craniofac Genet Dev Biol. 1999;19:12–9.

    CAS  PubMed  Google Scholar 

  • Garber RL, Kuroiwa A, Gehring WJ. Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J. 1983;2:2027–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gendron-Maguire M, Mallo M, Zhang M, Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993;75:1317–31.

    Article  CAS  PubMed  Google Scholar 

  • Golding JP, Trainor P, Krumlauf R, Gassmann M. Defects in pathfinding by cranial neural crest cells in mice lacking the neuregulin receptor ErbB4. Nat Cell Biol. 2000;2:103–9.

    Article  CAS  PubMed  Google Scholar 

  • Goodnough LH, DiNuoscio GJ, Ferguson JW, Williams T, Lang RA, Atit RP. Distinct requirements for cranial ectoderm and mesenchyme-derived Wnts in specification and differentiation of osteoblast and dermal progenitors. PLoS Genet. 2014;10(2):e1004152. doi:10.1371/journal.pgen.1004152.eCollection2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development. 2000;127:5355–65.

    CAS  PubMed  Google Scholar 

  • Gujar SK, Gandhi D. Congenital malformations of the orbit. Neuroimaging Clin N Am. 2011;21:585–602.

    Article  PubMed  Google Scholar 

  • Han J, Ishii M, Bringas Jr P, Maas RL, Maxson Jr RE, Chai Y. Concerted action of Msx1 and Msx2 in regulating cranial neural crest cell differentiation during frontal bone development. Mech Dev. 2007;124:729–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haworth KE, Wilson JM, Grevellec A, Cobourne MT, Healy C, Helms JA, Sharpe PT, Tucker AS. Sonic hedgehog in the pharyngeal endoderm controls arch pattern via regulation of Fgf8 in head ectoderm. Dev Biol. 2007;303:244–58.

    Article  CAS  PubMed  Google Scholar 

  • Heuzé Y, Singh N, Basilico C, Jabs EW, Holmes G, Richtsmeier JT. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in the neural crest- or mesoderm-derived tissues. Bone. 2014;63:101–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinrichsen K. The early development of morphology and patterns of the face in the human embryo. Adv Anat Embryol Cell Biol. 1985;98:1–79.

    Article  CAS  PubMed  Google Scholar 

  • Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI, Garcia Delgado C, Gonzalez-Ramos M, Kline AD, Jabs EW. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet. 1997;15:36–41.

    Article  PubMed  Google Scholar 

  • Hu D, Marcucio RS. Unique organization of the frontonasal ectodermal zone in birds and mammals. Dev Biol. 2009a;325:200–10.

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Marcucio RS. A SHH-responsive signalling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development. 2009b;136:107–16.

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Marcucio RS, Helms JA. A zone of frontonasal ectoderm regulates patterning and growth in the face. Development. 2003;130:1749–58.

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Young NM, Li X, Xu Y, Hallgrímsson B, Marcucio RS. A dynamic Shh expression pattern regulated by SHH and BMP signalling, coordinates fusion of primordia in the amniote face. Development. 2015;142:567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iseki S, Wilkie AOM, Heath JK, Ishimaru T, Eto K, Morriss-Kay GM. Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2. Development. 1997;124:3375–84.

    CAS  PubMed  Google Scholar 

  • Iseki S, Wilkie AOM, Morriss-Kay GM. Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development. 1999;126:5611–20.

    CAS  PubMed  Google Scholar 

  • Ishii M, Merrill AE, Chan YS, Gitelman I, Rice DP, Sucov HM, Maxson Jr RE. Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault. Development. 2003;130:6131–42.

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Yeo JY, Chytil A, Han J, Bringas Jr P, Nakajima A, Shuler CF, Moses HL, Chai Y. Conditional inactivation of Tgfr2 in cranial neural crest causes cleft palate and calvaria defects. Development. 2003;130:5269–80.

    Article  CAS  PubMed  Google Scholar 

  • Jabs EW, Müller U, Li X, Ma L, Luo W, Haworth IS, Klisak I, Sparkes R, Warman ML, Muliken JB, Snead ML, Maxson R. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell. 1993;75:443–50.

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM. Tissue origins and interactions in the mammalian skull vault. Dev Biol. 2002;241:106–16.

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Rice DPC, Kettunen PJ, Thesleff I. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development. 1998;125:1241–51.

    CAS  PubMed  Google Scholar 

  • Kjaer I. Ossification of the human fetal basicranium. J Craniofac Genet Dev Biol. 1990;10:29–38.

    CAS  PubMed  Google Scholar 

  • Kjaer I, Fischer-Hansen B. The adenohypophysis and the cranial base in early human development. J Craniofac Genet Dev Biol. 1995;15:157–61.

    CAS  PubMed  Google Scholar 

  • Kjaer I, Keeling JW, Fischer Hansen B, Becktor KB. Midline skeletodental morphology in holoprosencephaly. Cleft Palate Craniofac J. 2002;39:357–63.

    Article  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

    Article  CAS  PubMed  Google Scholar 

  • Köntges G, Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development. 1996;122:3229–42.

    PubMed  Google Scholar 

  • Kubis N, Zuber M, Méder JF, Mas JL. CT scan of the skull base in internal carotid artery hypoplasia. Cerebrovasc Dis. 1996;6:40–4.

    Article  Google Scholar 

  • Kubota Y, Ito K. Chemotactic migration of mesencephalic neural crest cells in the mouse. Dev Dyn. 2000;217:170–9.

    Article  CAS  PubMed  Google Scholar 

  • Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R, Oda H, Kuwaki T, Cao W-H, Kamada N, Jishage K, Ouchi Y, Azuma S, Toyoda Y, Ishikawa T, Kumada M, Yazaki Y. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature. 1994;368:703–10.

    Article  CAS  PubMed  Google Scholar 

  • Lajeunie E, Catala M, Renier D. Craniosynostosis: from a clinical description to an understanding of bone formation of the skull. Child’s Nerv Syst. 1999;15:676–80.

    Article  CAS  Google Scholar 

  • Lana-Elola E, Rice R, Grigoriadis AE, Rice DPC. Cell fate specification during calvarial bone and suture development. Dev Biol. 2007;311:335–46.

    Article  CAS  PubMed  Google Scholar 

  • Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini R, Amr K, Vilaboa N, Ruiz-Perez VL. Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfect. Am J Hum Genet. 2010;87:110–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Douarin N. Particularités du noyau interphasique chez la caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme “marquage biologique” dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l’ontogenèse. Bull Biol Franco-Belge. 1969;103:433–52.

    Google Scholar 

  • Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet. 1997;16:307–10.

    Article  CAS  PubMed  Google Scholar 

  • Lettice LA, Purdie LA, Carlson GJ, Kilanowski F, Dorin J, Hill RE. The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc Natl Acad Sci U S A. 1999;96:9650–700.

    Article  Google Scholar 

  • Liu YH, Kundu R, Wu L, Luo W, Ignelzi MA, Snead ML, Maxson RE. Premature suture closure and ectopic cranial bone in mice expressing Msx2 transgenes in the developing skull. Proc Natl Acad Sci U S A. 1995;92:6137–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Oh SH, Kang YY, Li G, Doan TM, Little M, Li L, Ahn K, Crenshaw EB, Frenz DA. Bone morphogenetic protein 4 (BMP4): a regulator of capsule chondrogenesis in the developing mouse inner ear. Dev Dyn. 2003;226:427–38.

    Article  CAS  PubMed  Google Scholar 

  • Lufkin T, Mark M, Hart CP, Dollé P, Le Meur M, Chambon P. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature. 1992;359:835–41.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Golden S, Wu L, Maxson R. The molecular basis of Boston-type craniosynostosis: the Pro148 – His mutation in the N-terminal arm of the MSX2 homeodomain stabilizes DNA binding without altering nucleotide sequence preferences. Hum Mol Genet. 1996;5:1915–20.

    Article  CAS  PubMed  Google Scholar 

  • Mansukhani A, Bellosta P, Sahni M, Basilico C. Signaling by fibroblast growth factors (FGF) and growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J Cell Biol. 2000;149:1297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcucio RS, Cordero DR, Hu D, Helms JA. Molecular interactions coordinating the development of the forebrain and face. Dev Biol. 2005;284:48–61.

    Article  CAS  PubMed  Google Scholar 

  • Martin JF, Bradley A, Olson EN. The paired-like homeo box gene Mhox is required for early events of skeletogenesis in multiple lineages. Genes Dev. 1995;9:1237–49.

    Article  CAS  PubMed  Google Scholar 

  • McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Development and tissue origins of the mammalian cranial base. Dev Biol. 2008;322:121–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCann JP, Owens PDA, Wilson DJ. Chick frontonasal process excision significantly affects mid-facial development. Anat Embryol. 1991;184:171–8.

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ. A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature. 1984a;308:428–33.

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell. 1984b;37:403–8.

    Article  CAS  PubMed  Google Scholar 

  • Mellott DO, Burke RD. Divergent roles for Eph and Ephrin in avian neural crest. BMC Dev Biol. 2008;8:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merlo GR, Zerega B, Paleari L, Trombino S, Mantero S, Levi G. Multiple functions of Dlx genes. Int J Dev Biol. 2000;44:619–26.

    CAS  PubMed  Google Scholar 

  • Merrill AE, Bochukova EG, Brugger SM, Ishii M, Pilz DT, Wall SA, Lyons KM, Wilkie AO, Maxson Jr RE. Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signalling in the pathogenesis of craniosynostosis. Hum Mol Genet. 2006;15:1319–28.

    Article  CAS  PubMed  Google Scholar 

  • Minoux M, Antonarakis GS, Kmita M, Duboule D, Rijli FM. Rostral and caudal pharyngeal arches share a common neural crest ground pattern. Development. 2009;136:637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moiseiwitsch JRD, Lauder JM. Serotonin regulates mouse cranial neural crest migration. Proc Natl Acad Sci U S A. 1995;92:7182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller F, O’Rahilly R. The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am J Anat. 1980;159:33–58.

    Article  PubMed  Google Scholar 

  • Mundlos S, Otto F, Mundlos C, Mulliken JB, Ayslworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JHM, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89:773–9.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Combrugghe B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29.

    Article  CAS  PubMed  Google Scholar 

  • Newberry EP, Latifi T, Battaile JT, Towler DA. Structure-function analysis of Msx2-mediated transcriptional suppression. Biochemistry. 1997;36:10451–62.

    Article  CAS  PubMed  Google Scholar 

  • Newberry EP, Latifi T, Towler DA. Reciprocal regulation of osteocalcin transcription by the homeodomain proteins Msx2 and Dlx5. Biochemistry. 1998;37:16360–8.

    Article  CAS  PubMed  Google Scholar 

  • Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene. 2006;372:62–70.

    Article  CAS  PubMed  Google Scholar 

  • Noden DM. An analysis of the migratory behavior of avian cephalic neural crest cells. Dev Biol. 1975;42:106–30.

    Article  CAS  PubMed  Google Scholar 

  • Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol. 1983;96:144–65.

    Article  CAS  PubMed  Google Scholar 

  • Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol. 1994;164:409–19.

    Article  CAS  PubMed  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gimour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765–71.

    Article  CAS  PubMed  Google Scholar 

  • Pasqualetti M, Ori M, Nardi I, Rijli FM. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development. 2000;127:5367–78.

    CAS  PubMed  Google Scholar 

  • Patten BM. The normal development of the facial region. In: Pruzansky S, editor. Congenital anomalies of the face and associated structures. Springfield: Thomas; 1961. p. 11–45.

    Google Scholar 

  • Pera EM, Kessel M. Patterning of the chick forebrain by the prechordal plate. Development. 1997;124:1699–706.

    Google Scholar 

  • Prince V, Lumsden A. Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development. 1994;120:911–23.

    CAS  PubMed  Google Scholar 

  • Qiu M, Bulfone A, Martinez S, Meneses JJ, Shimamura K, Pedersen RA, Rubenstein JLR. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second arch derivatives and abnormal differentiation in the forebrain. Genes Dev. 1995;9:2523–38.

    Article  CAS  PubMed  Google Scholar 

  • Qiu M, Bulfone A, Ghattas I, Meneses JJ, Christensen L, Sharpe PT, Presley R, Pedersen RA, Rubenstein JLR. Role of the Dlx homeobox genes in proximodistal patterning of the branchial arches: mutations of Dlx-1, Dlx-2, and Dlx-1 and −2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol. 1997;185:165–84.

    Article  CAS  PubMed  Google Scholar 

  • Rezzoug F, Seelan RS, Bhattacherjee V, Greene RM, Pisano MM. Chemokine-mediated migration of mesencephalic neural crest cells. Cytokine. 2011;56:760–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice DPC, Aberg T, Chan Y-S, Tang Z, Kettunen PJ, Pakarinen L, Maxson RE, Thesleff I. Integration of FGF and TWIST in calvarial bone and suture development. Development. 2000;127:1845–55.

    CAS  PubMed  Google Scholar 

  • Rijli FM, Mark M, Lakkaraju S, Dierich A, Dollé P, Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993;75:1333–49.

    Article  CAS  PubMed  Google Scholar 

  • Robledo RF, Rajan L, Li X, Lufkin T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial and appendicular skeletal development. Genes Dev. 2002;16:1089–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui L-C, Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996;14:357–60.

    Article  CAS  PubMed  Google Scholar 

  • Roybal PG, Wu NL, Sun J, Ting M-C, Schaefer C, Maxson RE. Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head. Dev Biol. 2010;343:28–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito H, Yamamura K-I, Suzuki N. Reduced bone morphogenetic protein receptor type 1A signalling in neural-crest-derived cells causes facial dysmorphism. Dis Model Mech. 2012;5:948–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santagali F, Minoux M, Ren S-Y, Rijli FM. Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis. Development. 2005;132:4927–36.

    Article  CAS  Google Scholar 

  • Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet. 1994;6:348–56.

    Article  CAS  PubMed  Google Scholar 

  • Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000;24:391–5.

    Article  CAS  PubMed  Google Scholar 

  • Schowing J. Influence inductrice de l’encéphale et de la chorde sur la morphogenèse du squelette crânien chez l’embryon de poulet. J Embryol Exp Morphol. 1961;9:326–34.

    CAS  PubMed  Google Scholar 

  • Schowing J. Influence inductrice de l’encéphale embryonnaire sur le développement du crâne chez le poulet. I. Influence de l’excision des territoires nerveux antérieurs sur le développement crânien. J Embryol Exp Morphol. 1968a;19:9–22.

    CAS  PubMed  Google Scholar 

  • Schowing J. Influence inductrice de l’encéphale embryonnaire sur le développement du crâne chez le poulet. II. Influence de l’excision de la chorde et des territoires encéphaliques moyen et postérieur sur le développement crânien. J Embryol Exp Morphol. 1968b;19:23–32.

    CAS  PubMed  Google Scholar 

  • Schowing J. Mise en évidence du rôle inducteur de l’encéphale dans l’ostéogenèse du crâne embryonnaire du poulet. J Embryol Exp Morphol. 1968c;19:88–93.

    Google Scholar 

  • Serbedzija GN, Bronner-Fraser M, Fraser SE. Vital dye analysis of cranial neural crest migration in the mouse embryo. Development. 1992;116:297–307.

    CAS  PubMed  Google Scholar 

  • Seufert DW, Hanken J, Klymkowsky MW. Type II collagen distribution during cranial development in Xenopus laevis. Anat Embryol. 1994;189:81–9.

    Article  CAS  PubMed  Google Scholar 

  • Sharma VP, Fenwick AL, Brocokp MS, et al. Mutations in TCF12, encoding a basic-helix-loop-helix partner of TWIST, are a frequent cause of coronal craniosynostosis. Nat Genet. 2013;45:306–9.

    Article  CAS  Google Scholar 

  • Shepherd JC, McGinnis W, Carrasco AE, De Robertis EM, Gehring WJ. Fly and frog homoeo domains show homologies with yeast mating type regulatory proteins. Nature. 1984;310:70–1.

    Article  CAS  PubMed  Google Scholar 

  • Shigetani Y, Nobusada Y, Kuratani S. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev Biol. 2000;228:73–85.

    Article  CAS  PubMed  Google Scholar 

  • Silver PHS. In ovo experiments concerning the eye, the orbit, and certain juxta-orbital structures, in the chick embryo. J Embryol Exp Morphol. 1962;10:423–50.

    CAS  PubMed  Google Scholar 

  • Steding G. The anatomy of the human embryo. A scanning electron-microscopy atlas. Basel: Karger; 2009.

    Google Scholar 

  • Streeter GL. Developmental horizons in human embryos. Description of age group XIII, embryos about 4 or 5 millimeters long, and age group XIV, periode of indentation of the lens vesicle. Contrib Embryol Carnegie Inst Wash. 1945;31:27–63.

    Google Scholar 

  • Streeter GL. Developmental horizons in human embryos. Description of age groups XV, XVI, XVII, and XVIII, being the third issue of a survey of the Carnegie collection. Contrib Embryol Carnegie Inst Wash. 1948;32:133–203.

    Google Scholar 

  • Szabo-Rogers HL, Geetha-Loganathan P, Whiting CJ, Nimmagadda S, Fu K, Richman JM. Novel skeletogenic patterning roles for the olfactory pit. Development. 2009;136:219–29.

    Article  CAS  PubMed  Google Scholar 

  • Théveneau E, Mayor R. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition and collective cell migration. WIREs Dev Biol. 2012;1:435–45.

    Article  CAS  Google Scholar 

  • Thompson H, Griffiths JS, Jeffery G, McGonnell IM. The retinal pigment epithelium of the eye regulates the development of scleral cartilage. Dev Biol. 2010;347:40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorogood P. The developmental specification of the vertebrate skull. Development. 1988;103(Suppl):141–53.

    PubMed  Google Scholar 

  • Ting M-C, Wu NL, Roybal PG, Sun J, Liu L, Yen Y, Maxson Jr RE. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development. 2009;136:855–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trainor PA, Tam PPL. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development. 1995;121:2569–82.

    CAS  PubMed  Google Scholar 

  • Trumpp A, Depew MJ, Rubenstein JLR, Bishop JM, Martin GR. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev. 1999;13:3136–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler MS. Development of the frontal bone and cranial meninges in the embryonic chick: an experimental study of tissue interactions. Anat Rec. 1983;206:61–70.

    Article  CAS  PubMed  Google Scholar 

  • Uz E, Alanay Y, Aktas D, Vargel I, Fucer S, Tuncbilek G, von Eggeling F, Yilmaz E, Deren O, Posorski N, Ozdag H, Liehr T, Balci S, Alikasifoglu M, Wollnik B, Akarsu NA. Disruption of ALX1 causes extreme microphthalmia and severe facial clefting: expanding the spectrum of autosomal recessive ALX-related frontonasal dysplasia. Am J Hum Genet. 2010;86:789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Water TR, McPhee JR. Determinants of otic capsule formation. Laryngoscope. 1987;97:315–22.

    PubMed  Google Scholar 

  • Vortkamp A, Gessler M, Grzeschik KH. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature. 1991;352:539–40.

    Article  CAS  PubMed  Google Scholar 

  • Wada N, Nohno T, Kuratani S. Dual origins of the prechordal cranium in the chicken embryo. Dev Biol. 2011;356:529–40.

    Article  CAS  PubMed  Google Scholar 

  • Wilkie AOM, Tang Z, Elanko N, Walsh S, Twigg SRF, Hurst JA, Wall SA, Chrzanowska KH, Maxson RE. Functional haploinsufficiency of the human homeobox gene MSX2 causes defect in skull ossification. Nat Genet. 2000;24:387–90.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi C, Yamagishi H, Maeda J, Tsuchihashi T, Ivey K, Hu T, Srivastava D. Sonic hedgehog is essential for first pharyngeal arch development. Pediatr Res. 2006;59:349–54.

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, de Wit D, Emoto N, Hammer RE. Dual genetic pathways of endothelin-mediated intercellular signalling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development. 1998;125:825–36.

    CAS  PubMed  Google Scholar 

  • Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S. Cell lineage in mammalian craniofacial mesenchyme. Mech Dev. 2008;125:797–808.

    Article  CAS  PubMed  Google Scholar 

  • Young NM, Hu D, Lainoff AJ, Smith FJ, Diaz R, Tucker AS, Trainor PA, Schneider RA, Hallgrímsson B, Marcucio RS. Embryonic bauplans and the developmental origins of facial diversity and constraint. Development. 2014;141:1059–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Catala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Catala, M. (2016). Embryology of the Head and Neck. In: Rossi, A. (eds) Pediatric Neuroradiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46258-4_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46258-4_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-662-46258-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics