Skip to main content

An Evaluation System for Games Related to Geography and Landscapes in Education

  • Chapter
  • First Online:
The Social Construction of Landscapes in Games

Part of the book series: RaumFragen: Stadt – Region – Landschaft ((RFSRL))

Abstract

There is a wide range of games that can be used for educational purposes, and some of them can be used for geographical and/or environmental education. Despite the wealth in papers relating to applications of games in geographical education, we still lack a set of criteria which might be used to evaluate them. In this paper, after an initial screening of 150 papers, 17 papers referring to games that are useful for geographical/landscape/environmental education were examined further. These games range from table/board games to augmented reality, cartographic, puzzles and virtual reality games. Consequently, a set of 34 criteria was formulated that can be useful to evaluate them. The criteria are articulated in four subsets: those referring to the user’s knowledge (6 criteria), skills (10 criteria), experience (9 criteria), attitudes and values (9 criteria). As it turns out, it is very difficult for some game to satisfy all criteria. For instance, while augmented reality games focus on enhancing the users’ experience, they lack problem-solving or knowledge-increasing capabilities. Subsequently, the basic advantages of each game type per set of criteria are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • An, Ji-Y., & Nigg, C. R. (2017). The promise of an augmented reality game—Pokémon GO. Annals of Translational Medicine, 5(1), S11, 1–3. https://doi.org/10.21037/atm.2017.03.12.

  • Anupama, C. G., Gobinath, V., & Vijay Patil, S. (2019). Aurora retrive – An augmented reality game using real world maps. International Journal of Recent Technology and Engineering, 8(2S4), 240–243.

    Google Scholar 

  • Avery, P., & Louis, S. (2010). Coevolving influence maps for spatial team tactics in a RTS game. Proceedings of the Conference GECCO’10, July 7–11, 2010, Portland, Oregon, USA (pp. 783–790).

    Google Scholar 

  • Baauw, E., Bekker M. M., & Barendregt, W. (2005). A structured expert evaluation method for the evaluation of children’s computer games. In M. F. Costabile & F. Paternò (Eds.), Human-computer interaction -interact 2005. Lecture notes in computer science, Vol. 3585, Springer, Berlin, Heidelberg (pp. 457–469).

    Google Scholar 

  • Bas, N., Löffler, A., Heininger, R., Utesch, M., & Krcmar, H. (2020). Evaluation methods for the effective assessment of simulation games. In M. Auer & T. Tsiatsos (Eds.), The challenges of the digital transformation in education. ICL 2018. Advances in intelligent systems and computing, Vol. 916 (pp. 626–637). Springer.

    Google Scholar 

  • Batty, M., & Xie, Y. C. (1994). From cells to cities. Environment and Planning B, 21, 531–548.

    Google Scholar 

  • Berr, K. (2022). Philosophical and cultural-theoretical approaches to play/playing. In D. Edler, O. Kühne, & C. Jenal (Eds.), The social construction of landscape in games (in this volume). Springer.

    Google Scholar 

  • Bishop, I. D. (2011). Landscape planning is not a game: Should it be? Landscape and Urban Planning, 100, 390–392.

    Article  Google Scholar 

  • Bogacheva, N. V. (2016). The experimental method as an evaluation tool in serious games research and development. In R. Dörner, S. Göbel, M. Kickmeier-Rust, M. Masuch, & K. Zweig (Eds.), Entertainment computing and serious games. Lecture notes in computer science, Vol. 9970, Springer, Cham, (pp. 284–305).

    Google Scholar 

  • Bueno, S., Dolores Gallego, M., & Noyes, J. (2020). Uses and gratifications on augmented reality games: An examination of Pokémon Go. Applied Sciences, 10, 1644. https://doi.org/10.3390/app10051644

  • Büscher, B. (2013). Nature 2.0. Geoforum, 44(1), 1–3.

    Google Scholar 

  • Cartwright, W. (2006). Exploring games and gameplay as a means of accessing and using geographical information. Human IT, 8(3), 28–67.

    Google Scholar 

  • Charsky, D., & Ressler, W. (2011). “Games are made for fun”: Lessons on the effects of concept maps in the classroom use of computer games. Computers & Education, 56, 604–615.

    Article  Google Scholar 

  • Costa, M. C., Manso, A., & Patrício, J. (2020). Design of a mobile augmented reality platform with game-based learning purposes. Information, 11(127), 1–19.

    Google Scholar 

  • Edler, D. (2020). Where spatial visualization meets landscape research and “Pinballology”: Examples of landscape construction in pinball games. KN – Journal of Cartography and Geographic Information, 70, 55–69.

    Google Scholar 

  • Edler, D., Kühne, O., Jenal, C., Vetter, M., & Dickmann, F. (2018). Potenziale der Raumvisualisierung in Virtual Reality (VR) fur die sozialkonstruktivistische Landschaftsforschung [The potentials of spatial visualization in virtual reality (VR) for the social constructivist landscape research]. Kartographische Nachrichten, 5, 245–254.

    Google Scholar 

  • Edler, D., Keil, J., Wiedenlubbert, T., Sossna, M., Kühne, O., & Dickmann, F. (2019). Immersive VR experience of redeveloped post-industrial sites: The example of “Zeche Holland”in Bochum-Wattenscheid. KN – Journal of Cartography and Geographic Information, 69(4), 267–284.

    Google Scholar 

  • Edler, D., Jenal, C., & Kühne, O. (2020). Modern approaches to the visualization of landscapes—An introduction. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 3–15). Springer VS.

    Chapter  Google Scholar 

  • Fletcher, R. (2017). Gaming conservation: Nature 2.0 confronts nature-deficit disorder. Geoforum, 79, 153–162.

    Article  Google Scholar 

  • Fontaine, D. (2020). Landscape in computer games—The examples of GTA V and watch dogs 2. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 293–306). Springer VS.

    Chapter  Google Scholar 

  • Garcia-Barrios, L., Garcia-Barrios, R., Cruzmorales, J., & Smith, J. A. (2015). When death approaches: Reverting or exploiting emergent inequity in a complex land-use table-board game. Ecology and Society, 20(2), 13.

    Article  Google Scholar 

  • Gryl, I. (2022). Spaces, landscapes and games: The case of (Geography) education using the example of spatial citizenship and education for innovativeness. In D. Edler, O. Kühne, & C. Jenal (Eds.), The social construction of landscape in games (in this volume). Springer.

    Google Scholar 

  • Huang, J., Lucash, M. S., Scheller, R. M., & Klippel, A. (2020). Walking through the forests of the future: Using data-driven virtual reality to visualize forests under climate change. International Journal of Geographical Information Science, 35(6), 1155–1178. https://doi.org/10.1080/13658816.2020.1830997

  • Juhász, L., Novack, T., Hochmair, H. H., & Qiao, S. (2020). Cartographic vandalism in the era of location-based games—The case of OpenStreetMap and Pokémon GO. International Journal of Geo-Information, 9, 197.

    Google Scholar 

  • Jutz, P., & Endreß, S. (2022). Pokémon GO and Landscape. In D. Edler, O. Kühne, & C. Jenal (Eds.), The social construction of landscape in games (in this volume). Springer.

    Google Scholar 

  • Keil, J., Edler, D., Schmitt, T., & Dickmann, F. (2021). Creating immersive virtual environments based on open geospatial data and game engines. KN Journal of Cartography and Geographic Information, 71, 53–65.

    Google Scholar 

  • Koegst, L., Baum, L., & Stintzing, M. (2022). Landscape in action. The teaching of ‘landscape’ in innovative excursion formats using the example of the digital urban geography excursion in Stuttgart developed within the project ‘InExkurs’. In D. Edler, O. Kühne, & C. Jenal (Eds.), The social construction of landscape in games (pin this volume). Springer.

    Google Scholar 

  • Kühne, O. (2018). Landscape and power in geographical space as a social-aesthetic construct. Springer International Publishing.

    Book  Google Scholar 

  • Kühne, O. (2019). Landscape theories. A brief Introduction. Springer VS.

    Book  Google Scholar 

  • Kühne, O. (2020). The social construction of space and landscape in internet videos. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 121–137). Springer VS.

    Chapter  Google Scholar 

  • Kühne, O. (2022). Representations of landscape in the strategy game Civilization. In D. Edler, O. Kühne, & C. Jenal (Eds.), The social construction of landscape in games (in this volume). Springer.

    Google Scholar 

  • Kühne, O., Jenal C., & Edler, D. (2020). Functions of landscape in games—A theoretical approach with case examples. Arts, 9(123), 1–16.

    Google Scholar 

  • Laine, T. H. (2018). Mobile educational augmented reality games: A systematic literature review and two case studies. Computers, 7(19), 1–28.

    Google Scholar 

  • Lara-Cabrera, R., Cotta, C., & Fernandez-Leiva, A. J. (2014). Geometrical vs topological measures for the evolution of aesthetic maps in a RTS game. Entertainment Computing, 5, 251–258

    Google Scholar 

  • Li, X. (2011). Emergence of bottom-up models as a tool for landscape simulation and planning. Landscape and Urban Planning, 100, 393–395.

    Article  Google Scholar 

  • Looi Q. E., & See S. L. (2011). Assessing the suitability of MMORPGs as educational games using HCI evaluation methods. In A. Abd Manaf, A. Zeki, M. Zamani, S. Chuprat, E. El-Qawasmeh (Eds.), Informatics engineering and information science. ICIEIS 2011. Communications in Computer and Information Science (Vol. 252, pp. 289–298). Springer, Berlin, Heidelberg.

    Google Scholar 

  • Marlow, C. M. (2012). Making games for environmental design education: Revealing landscape architecture. International Journal of Gaming and Computer-Mediated Simulations, 4(2), 60–83.

    Article  Google Scholar 

  • Moreau, C., Barnaud, C., & Mathevet, R. (2019). Conciliate agriculture with landscape and biodiversity conservation: A role-playing game to explore trade-offs among ecosystem services through social learning. Sustainability, 11(310), 1–20.

    Google Scholar 

  • Papadimitriou, F. (2002). Modelling indices and indicators of landscape complexity: An approach using GIS. Ecological Indicators, 2, 17–25.

    Article  Google Scholar 

  • Papadimitriou, F. (2009). Modelling spatial landscape complexity using the Levenshtein algorithm. Ecological Informatics, 4, 48–55.

    Article  Google Scholar 

  • Papadimitriou, F. (2010). Conceptual modelling of landscape complexity. Landscape Research, 35(5), 563–570.

    Article  Google Scholar 

  • Papadimitriou, F. (2012). The algorithmic complexity of landscapes. Landscape Research, 37(5), 599–611.

    Article  Google Scholar 

  • Papadimitriou, F. (2013). Mathematical modelling of land use and landscape complexity with ultrametric topology. Journal of Land Use Science, 8(2), 234–254.

    Article  Google Scholar 

  • Papadimitriou, F. (2020). Spatial complexity. Theory, mathematical methods and applications. Springer.

    Google Scholar 

  • Papadimitriou, F. (2020a). Modelling and visualization of landscape complexity with braid topology. In D. Edler, C. Jenal, & O. Kühne (Eds.), Modern approaches to the visualization of landscapes (pp. 79–101). Springer.

    Google Scholar 

  • Papadimitriou, F. (2020b). Squares, cats and mazes: The art and magic of spatial complexity In F. Papadimitriou (Ed.), Spatial complexity. Theory, mathematical methods and applications. (pp. 127–141). Springer.

    Google Scholar 

  • Papadimitriou, F. (2020c). What is spatial complexity? In F. Papadimitriou (Ed.), Spatial complexity. Theory, mathematical methods and applications (pp. 3–18). Springer.

    Google Scholar 

  • Pergams, O., & Zaradic, P. (2008). Evidence for a fundamental and pervasive shift away from nature-based recreation. Proceedings of the National Academy of Sciences, 105, 2295–2300.

    Article  Google Scholar 

  • Pombo, L., & Marques, M. M. (2019). Educational mobile augmented reality Edupark game: Does it improve students’ learning? 15th international conference mobile learning 2019 (pp. 19–26), ISBN: 978-989-8533-86-9.

    Google Scholar 

  • Purnomo, H., Shantiko, B., Wardell, D. A., Irawati, R. H., Pradana, N. I., & Yovi, E. Y. (2017). Learning landscape sustainability and development links. International Forestry Review, 19(3), 333–349.

    Google Scholar 

  • Quinn, B., & Cartwright, W. (2008). Computer games for interacting with a rural landscape. Lecture Notes in Geoinformation and Cartography, 9783540691679, 551–570.

    Article  Google Scholar 

  • Rahman, A. (December 2017). Rethinking the mini-map: A navigational Aid to support spatial learning in urban game environments. International Journal of Human-Computer Interaction, 34(12), 1135–1147.

    Google Scholar 

  • Rauschnabel, P. A., Rossmann, A., & tom Dieck, M. C. (2017). An adoption framework for mobile augmented reality games: The case of Pokemon Go. Computers in Human Behavior, 76, 276–286.

    Google Scholar 

  • Rodríguez Serrano, A., Martín-Núñez, M., & Gil-Soldevila, S. (2017). “Diseñoludológico y realidad aumentada. La experiencia de juego en Pokémon Go!, Niantic 2016) (Ludologic design and augmented reality. The game experience in Pokémon Go!, Niantic, 2016). Revista Latina de Comunicación Social, 72, 667–678.

    Google Scholar 

  • Ruiz-Ariza, A., Casuso, R. A., Suarez-Manzano, S., & Martínez-Lopez, E. J. (2018). Effect of augmented reality game Pokemon GO on cognitive performance and emotional intelligence in adolescent young. Computers & Education, 116, 49–63.

    Google Scholar 

  • Sandbrook, C. A. W., & Monteferri, B. (2015). Digital games and biodversity conservation. Conservation Letters, 8, 118–124.

    Google Scholar 

  • Santos, L., Silva, N., Nóbrega, R., Almeida, R., & Coelho, A. (2020). An interactive application framework for natural parks using serious location-based games with augmented reality. In Proceedings of the 15th international joint conference on computer vision, imaging and computer graphics theory and applications (VISIGRAPP 2020) (pp. 247–254), ISBN: 978-989-758-402-2.

    Google Scholar 

  • Schmidt, J. D. E., & De Marchi, A. C. B. (2017). Usability evaluation methods for mobile serious games applied to health: A systematic review. Universal Access to Information Society, 16, 921–928.

    Article  Google Scholar 

  • Swetnam, R. D., & Korenko, J. (2019). Can computer game landscapes target new audiences for landscape quality assessment? Applied Geography, 113, 102102.

    Google Scholar 

  • Torrens, P. M., & Benenson, I. (2005). Geographic automata systems. International Journal of Geographical Information Science, 19, 385–412.

    Article  Google Scholar 

  • Viglino, J.-M., & Guigues, L. (2002). Cadastre map assembling: a puzzle game resolution. IEEE Proceedings of the 6th international conference on document analysis and recognition, 7087151. https://doi.org/10.1109/ICDAR.2001.953979.

  • Wu, J., & Liang, L. (2012). A multiple criteria ranking method based on game cross-evaluation approach. Annals of Operations Research, 197, 191–200.

    Article  Google Scholar 

  • Yáñez-Gómez, R., Cascado-Caballero, D., & Sevillano, J. (2017). Academic methods for usability evaluation of serious games: A systematic review. Multimedia Tools and Applications, 76, 5755–5784.

    Google Scholar 

  • Youm, D.-H., Seo, S.-H., & Kim, J.-Y. (2019). Design and development methodologies of Kkongalmon, a location-based augmented reality game using mobile geographic information. EURASIP Journal on Image and Video Processing, 1, 2–11. https://doi.org/10.1186/s13640-018-0395-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadimitriou, F. (2022). An Evaluation System for Games Related to Geography and Landscapes in Education. In: Edler, D., Kühne, O., Jenal, C. (eds) The Social Construction of Landscapes in Games. RaumFragen: Stadt – Region – Landschaft. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-35403-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-35403-9_19

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-35402-2

  • Online ISBN: 978-3-658-35403-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics