Skip to main content

Extension of acoustic holography to cover higher frequencies

  • Conference paper
  • First Online:
Automotive Acoustics Conference 2015

Part of the book series: Proceedings ((PROCEE))

  • 588 Accesses

Zusammenfassung

Near-field Acoustical Holography (NAH) is based on performing 2D spatial Discrete Fourier Transforms (DFT), and therefore the method requires a regular mesh of measurement positions. To avoid spatial aliasing problems, the mesh spacing must be somewhat less than half of the acoustic wavelength. In practice, this requirement sets a serious limitation on the upper frequency limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • [1] Sarkissian, A., Method of superposition applied to patch near-field acoustical holography. J Acoust Soc Am. 2005, 118(2), 671–678.

    Article  Google Scholar 

  • [2] Hald, J., Basic theory and properties of statistically optimized near-field acoustical holography. J Acoust Soc Am. 2009, 125(4), 2105-2120.

    Article  Google Scholar 

  • [3] Hald, J., Scaling of plane-wave functions in statistically optimized near-field acoustic holography. J Acoust Soc Am. 2014, 136(5), 2687-2696.

    Article  Google Scholar 

  • [4] Hald, J., Array designs optimized for both low-frequency NAH and highfrequency beamforming. Proc InterNoise 2004.

    Google Scholar 

  • [5] Chardon, G., Daudet, L., Peillot, A., Ollivier, F., Bertin, N., Gribonval, R., Nearfield acoustic holography using sparse regularization and compressive sampling principles. J Acoust Soc Am. 2012, 132(3), 1521-1534.

    Article  Google Scholar 

  • [6] Hald, J., Wideband acoustical holography. Proc InterNoise 2014.

    Google Scholar 

  • [7] International patent application no. PCT/EP2014/063597.

    Google Scholar 

  • [8] Suzuki, T., Generalized Inverse Beam-forming Algorithm Resolving Coherent/ Incoherent, Distributed and Multipole Sources. Proc. AIAA Aeroacoustics Conference 2008.

    Google Scholar 

  • [9] Grant, M., Boyd, S., “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, 2014

  • [10] Gomes, J., Hansen, P.C., A study on regularization parameter choice in Near-field Acoustical Holography. Proc Acoustics’08 (Euronoise 2008), 2875-2880.

    Google Scholar 

  • [11] Williams, E.G., Fourier Acoustics. Academic Press, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Hald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hald, J. (2019). Extension of acoustic holography to cover higher frequencies. In: Siebenpfeiffer, W. (eds) Automotive Acoustics Conference 2015. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-27648-5_14

Download citation

Publish with us

Policies and ethics