Skip to main content

Environmental model extension for lane change prediction with neural networks

  • Conference paper
  • First Online:
19. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

Driven by the desire of improving traffic safety, traffic efficiency and a better utilization of the time people spend in traffic, the development proceeds from Advanced Driver Assistance Systems (ADAS) towards fully automated systems. ADAS systems are categorized as level 2 systems according to the Society of Automotive Engineers (SAE) [1] definition, on a classification scheme from level 0 to 5 where level 5 is a fully automated system. With increasing automation level the complexity rises, due to the piecewise shift of responsibility towards the automated driving system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • 1. SAE International (2018); Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles; Standard J3016_201806

    Google Scholar 

  • 2. Tas, Ö.S.; Kunht, F.; Zöllner, J.M.; Stiller, C. (2016); Functional System Architectures Towards Fully Automated Driving. In: 2016 Intel. Veh. Symp. (IV), 304-–309

    Google Scholar 

  • 3. Lee, D.; Kwon, Y.P.; McMains, S.; Hedrick, J.K. (2017); Convolution Neural Network-Based Lane Change Intention Prediction of Surrounding Vehicles for ACC. In: 2017 Int. Conf. on Intel. Transp. Sys. (ITSC), 1–6

    Google Scholar 

  • 4. Mänttäri, J.; Folkesson, J.; Ward, E. (2018); Learning to Predict Lane Changes in Highway Scenarios Using Dynamic Filters on a Generic Traffic Representation. In: 2018 Intel. Veh. Symp. (IV), 1385–1392

    Google Scholar 

  • 5. Krüger, M.; Stockem Novo, A.; Nattermann, T.; Glander, K.H.; Bertram, T. (2018); Lane Change Prediction Using Neural Networks Considering Classwise Non-Uniformly Distributed Data. In: 2018 Proceedings Automotive meets Electronics, 1–6

    Google Scholar 

  • 6. Dagli, I.; Breuel, G.; Schittenhelm, H.; Schanz, A. (2004); Cutting-in Vehicle Recognition for ACC Systems – Towards Feasible Situation Analysis Methodologies. In: 2004 Intel. Veh. Symp. (IV), 925–930

    Google Scholar 

  • 7. Kasper, D.; Weidl, G.; Dang, T.; Breuel, G.; Tamke, A.; Rosenstiel, W. (2011); Object-Oriented Bayesian Networks for Detection of Lane Change Maneuvers. In: 2011 Intel. Veh. Sysmp. (IV), 673–678

    Google Scholar 

  • 8. Dogan, Ü.; Edelbrunner, J.; Iossifidis, I. (2011); Autonomous Driving: A Comparison of Machine Learning Techniques by Means of the Prediction of Lane Change Behavior. In: 2011 Int. Conf. on Robotics and Biomimetrics (ROBIO), 1837–1843

    Google Scholar 

  • 9. Wissing, C.; Nattermann, T.; Glander, K.H.; Seewald, A.; Bertram, T. (2017); Lane Change Prediction by Combining Movement and Situation based Probabilities. In: 2017 IFAC-PapersOnLine 50(1), 3554–3559

    Article  Google Scholar 

  • 10. Nilsson, J.; Fredriksson, J.; Coelingh, E. (2015); Rule-Based Highway Maneuver Intention Recognition. In 2015 Int. Conf. on Intel. Transp. Sys. (ITSC), 950–955

    Google Scholar 

  • 11. Colyar, J.; Halkias, J. (2006); Interstate 80 Freeway Dataset. In: 2006 Fed. Highway Admin. (FHWA) Tech. Report FHWA HRT-06-137

    Google Scholar 

  • 12. Schlechtriemen, J.; Wedel, A.; Hillenbrand, J.; Breuel, G.; Kuhnert, K.D. (2014); A Lane Change Detection Approach using Feature Ranking with Maximized Predictive Power. In: 2014 Intel. Veh. Symp. (IV), 108–114

    Google Scholar 

  • 13. Schisterman, E.; Perkins, N.; Liu, A.; Bondell, H. (2005); Optimal Cut-Point and its Corresponding Youden Index to Discriminate Individuals using Pooled Blood Samples. In: 2005 Epidemiology 16(1), 73–81

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krüger, M., Novo, A.S., Nattermann, T., Mohamed, M., Bertram, T. (2019). Environmental model extension for lane change prediction with neural networks. In: Bargende, M., Reuss, HC., Wagner, A., Wiedemann, J. (eds) 19. Internationales Stuttgarter Symposium . Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25939-6_14

Download citation

Publish with us

Policies and ethics