Skip to main content

Modellierung der Zweiphasenströmung

  • Chapter
  • First Online:
Handbuch Dampfturbinen
  • 8492 Accesses

Zusammenfassung

Niederdruckturbinen, wie auch die Hochdruckturbinen von Kernkraftwerken mit Siedewasserreaktor, entspannen in der Regel bis in das Nassdampfgebiet. Die hierbei entstehende Dampfnässe führt einerseits zu Wirkungsgradverlusten und andererseits zu Erosionsproblemen. Nahezu die Hälfte der Verluste einer Niederdruckturbine entsteht aufgrund der Kondensation. Die Ausscheidung von Wasser aus der gasförmigen Phase erfolgt in der Regel entweder an kühleren Oberflächen oder im Fluid durch Tropfenbildung. Prinzipiell stehen in geführten Strömungen die Schaufeloberflächen oder Gehäusewände zur Kondensation zur Verfügung. Aufgrund der geringen Temperaturdifferenzen unter stationären Betriebsbedingungen ist der Wärmeübergang allerdings gering, so dass von einer zur Berandung adiabaten Strömung ausgegangen werden kann. Somit ist die Kondensation an den strömungsführenden, festen Oberflächen von keiner oder nur von untergeordneter Bedeutung. Stets dominiert die Kondensation im Fluid in Form von Tropfen.

Eine optimierte Auslegung der Niederdruckturbine kann nur unter Berücksichtigung der aus unterkühlten Bedingungen kondensierten Tröpfchen und deren Interaktion mit der Beschaufelung erfolgen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  1. Ahmad, M., Casey, M., Sürken, N.: Experimental assessment of droplet impact erosion resistance of steam turbine blade materials. Wear 267, 1605–1618 (2009)

    Article  Google Scholar 

  2. Aquelet, N., Souli, M., Olovsson, L.: Euler-Lagrange coupling with damping effects: Application to slamming problems. Comput. Methods. Appl. Mech. Eng. 195, 110–132 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashgriz, N.: Handbook of Atomization and Sprays – Theory and Applications, 1. Aufl. Springer, ■ (2011)

    Book  Google Scholar 

  4. Atheya, S.; Mistry, H.; Moraga, F.; Dey, S.: Numerical Sensitivity study on nucleation of droplets in steam turbines. Proceedings of ASME power, Denver, Co. POWER2011-55269 (2011).

    Google Scholar 

  5. Bakhtar, F., White, A.J., Mashmoushy, H.: Theoretical Treatments of Two-dimensional Two-Phase Flows of Steam and Comparison with Cascade Measurements. Proc. Instn Mech. Engrs Part C: J. Mech. Eng. Sci 219, 1335–1335 (2005)

    Google Scholar 

  6. Bakhtar, F., Young, J.B., White, A.J., Simpson, D.A.: Classical Nucleation Theory and its Application to Condensing Steam Flow Calculations. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 219, 1315–1333 (2005)

    Article  Google Scholar 

  7. Baumann, K.: Recent Developments in Steam Turbine Practice. J. Instn. Elec. Engnrs. 48, 768–842 (1912)

    Google Scholar 

  8. Baumann, K.: Some recent developments in large steam turbine practice. Eng 111, 435 (1921)

    Google Scholar 

  9. Becker, R., Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Phys. 24, 719–752 (1935)

    Article  MATH  Google Scholar 

  10. Bellows, J.C.: Chemical Processes in Steam Turbines. Power Plant Chem. ■(1), 26–30 (1999)

    Google Scholar 

  11. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods. Appl. Mech. Eng. 2–3(99), 235–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blake, T.D.: The physics of moving wetting lines. J. Colloid Interface Sci. 299(1), 1–13 (2006)

    Article  MathSciNet  Google Scholar 

  13. Boden, F.P., Brunton, J.H.: The deformation of solids by liquid impact at supersonic speeds. Proc. R. Soc. Lond. 263(1315), 433–450 (1961)

    Article  Google Scholar 

  14. Campos-Amezcua, A., Gallegos-Muñoz, A., Romero, C.A., Mazur-Czerwiec, Z., Campos-Amezcua, R.: Numerical investigation of the solid particle erosion rate in a steam turbine nozzle. Appl. Therm. Eng. 27, 2394–2403 (2007)

    Article  Google Scholar 

  15. Charbonnier, D.: D’eveloppement d’un modèle de tensions d’eterministes instationnaires adapté à la simulation de turbomachines multiétagées. PhD Thesis (2004) École Centrale de Lyon, France.

    Google Scholar 

  16. Coghe, A.; Cossali, G.; Marengo, M.: A First Study about Single Drop Impingement on Thin Liquid Film in a Low Laplace Number Range. Proc. 11th European Conf. of ICLASS Europe (1995).

    Google Scholar 

  17. Cook, S.S.: Erosion by Water-Hammer. Proc. R. Soc. Lond. Ser. A 119(783), 481–488 (1928)

    Article  Google Scholar 

  18. Cossali, G.E.; Coghe, A.; Marengo, M.: The impact of a single drop on a wettend surface. Experiments in Fluids (1999), S. 22.

    Google Scholar 

  19. Crane, R.I.: Droplet deposition in steam turbines. Proc Imeche Part C: J. Mech. Engrg. Sci. 218(8), 859–870 (2004)

    Article  Google Scholar 

  20. Di Vernieri Cuppari, M.G., Souza, R.M., Sinatora, A.: Effect of hard second phase on cavitation erosion of Fe-Cr-Ni-C alloys. Wear 258(596), 603 (2005)

    Google Scholar 

  21. Dimitrakopoulos, P., Higdon, J.J.L.: Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows. J. Fluid Mech. 336, 351–378 (1997)

    Article  MATH  Google Scholar 

  22. Drabek, T., Böhm, H.J.: Micromechanical finite element analysis of metal matrix composites using nonlocal ductile failuremodels. Comp. Material Sci. 37, 29–35 (2005)

    Article  Google Scholar 

  23. Dumouchel, C.: On the experimental investigation on primary atomization of liquid streams. Exp. Fluids 45(3), 371–422 (2008)

    Article  Google Scholar 

  24. Eckel, G.; Rachner, M.; Le Clerq, M.; Aigner, M.: Semi-empirical primary atomization models for transient lagrangian spray simulation. In: Proceedings 8th International Conference on Multiphase Flow (ICMF), May 26–31, Jeju, Korea, (2013).

    Google Scholar 

  25. Eisfeld, T.: Experimentelle Untersuchung der Aerodynamik einer mit Wassertropfen beladenen Luftströmung in einem ebenen Verdichtungsgitter. Dissertation. Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg (2011).

    Google Scholar 

  26. El-Genk, M.S., Saber, H.H.: Minimum thickness of a flowing down liquid film on a vertical surface. Int. J. Heat Mass Transf. 44, 2809–2825 (2001)

    Article  MATH  Google Scholar 

  27. Faddeyev, I.P., Khayiva, S.L., Mosenzhnik, B.Y.: Oblique Impingement of a Spherical Liquid Droplet on a Solid Wall. Fluid Mech. – Sov. Res. 3, 17 (1988)

    MATH  Google Scholar 

  28. Fendler, Y.; Dorey, J.-M.; Stanciu, M.; Lance, M.; Leonard, O.: Developments for Modeling of Droplet Deposition and Liquid Film Flow in a Throughflow Code for Steam Turbines. Proceedings of ASME Turbo Expo, GT2012-68968, June 11–12, Copenhagen, Denmark (2012).

    Google Scholar 

  29. Field, J.E., Dear, J.P., Orgen, J.E.: The effects of target compliance on liquid drop impact. J. Appl. Phys. 65(2), 533–540 (1989)

    Article  Google Scholar 

  30. Foucart, H.: Modélisation tridimensionelle des films liquids pariétaux dans les moteurs à combustion interne. PhD Thesis, Faculté des sciences de l’Université de Rouen, France, 1998.

    Google Scholar 

  31. Frenkel, J.: Kinetic Theory of Liquids. Oxford University Press, New York (1946)

    MATH  Google Scholar 

  32. Frenkel, J.: Kinetic Theory of Liquids. Dover, ■ (1955)

    MATH  Google Scholar 

  33. Gardner, G.C.: Event Leading to Erosion in the Steam Turbine. Proc Imeche 178(1/23), 593–623 (1964)

    Google Scholar 

  34. Gepperth, S.; Guildenbrecher, D.; Koch, R.; Bauer, H.-J.: Pre-filming primary atomization: Experiments and modeling. ILASS-Europe, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Tschechien, (2010).

    Google Scholar 

  35. Gepperth, S.; Koch, R.; Bauer, H.-J.: Analysis and comparison of primary droplet characteristics in the near field of a prefilming airblast atomizer. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-94033, June 3–7, San Antonio, Texas, USA, (2013).

    Google Scholar 

  36. Gerber, A.G.: Two-Phase Eulerian/Lagrangian Model for Nucleating Steam. Flow. J. Fluids Eng. 124, 465–475 (2002)

    Article  Google Scholar 

  37. Gerber, A.G., Kermani, M.J.: A Pressure Based Eulerian-Eulerian Multi-phase Model for Nonequilibrium Condensation in Transonic Steam Flow. Int. J. Heat. Mass. Transf. 47, 2217–2231 (2004)

    Article  MATH  Google Scholar 

  38. Gerber, A.G., Sigg, R., Völker, L., Casey, M.V., Stürken, N.: Predictions of non-equilibrium phase transition in a model low pressure steam turbine. Proc. Inst. Mech. Eng. Part A: J. Power Energy 221, 825–835 (2007)

    Article  Google Scholar 

  39. Gerber, A.G.: Inhomogeneous Multifluid Model for Prediction of Nonequilibrium Phase Transition and Droplet Dynamics. J. Fluids Eng. 130, 031402-1–031402-11 (2008)

    Article  Google Scholar 

  40. Gomaa, H., Weigand, B., Haas, M., Munz, C.D.: Direct numerical Simulation (DNS) on the influence of grid refinement for the process of splashing. High Performance Computing in Science and Engineering, Bd. 08. (2009)

    Google Scholar 

  41. Guha, A.: A unified eulerian theory of turbulent deposition to smooth and rough surfaces. J. Aerosol Sci. 28, 1517–1537 (1997)

    Article  Google Scholar 

  42. Gyarmathy, G.: Bases of a theory for wet steam turbines. PhD Thesis 1962 Federal Technical University of Zürich, Switzerland, 1962.

    Google Scholar 

  43. Gyarmathi, G.: Zur Wachstumsgeschwindigkeit kleiner Flüssigkeitstropfen in einer übersättigten Atmosphäre. Zeitschrift Für Angew. Math. Phys. 14, 280–293 (1963)

    Article  Google Scholar 

  44. Gyarmathi, G.: Condensation in flowing steam. In: Moore, M.J., Sieverding, C.H. (Hrsg.) Two-Phase Steam Flow in Turbines and Separators, S. 127–189. Hemisphere, London (1976)

    Google Scholar 

  45. Haller, K.K., Ventikos, Y., Poulikakos, D.: Computational study of highspeed liquid droplet impact. J. Appl. Phys. 92(5), 2821–2828 (2002)

    Article  Google Scholar 

  46. Hammitt, F.; Hwang, J.; Kim, W.: Liquid film thickness measurements in University of Michigan wet steam tunnel. Tech. rep., University of Michigan, Michigan, USA, December, UMICH 012449-23-1, (1975).

    Google Scholar 

  47. Hammitt, F., Krzeczkowski, S., Krzyzanowski, J.: Liquid film and droplet stability consideration as applied to wet steam flow. Forschung im Ingenieurwesen, Bd. 47. (1981)

    Google Scholar 

  48. Hancox, N.L., Brunton, J.H.: The Erosion of Solids by the Repeated Impact of Liquid Drops. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci 260(1110), 121–139 (1966)

    Google Scholar 

  49. Han, Y.; Xie, Y.; Zhang, D.: Numerical Study on high-speed Impact between a water Droplet and a deformable solid Surface. Proceedings of ASME Turbo Expo 2012, GT2012-6970, June 11–15, Copenhagen, Denmark, (2012).

    Google Scholar 

  50. Heymann, F.J.: On the Shock Wave Velocity and Impact Pressure in High-Speed Liquid-Solid Impact. J. Basic Eng. 90, 400–402 (1968)

    Article  Google Scholar 

  51. Heymann, F.J.: High speed impact between a liquid drop and a solid surface. J. Appl. Phys. 40(13), 5113–5122 (1969)

    Article  Google Scholar 

  52. Heymann, F.J.: Liquid Impingment Erosion. ASM Handbook 18, (1992), pp. 221–231.

    Google Scholar 

  53. Holmes, D.G.: Mixing planes revisited: A steady state mixing plane approach designed to combine high levels of conversation and robustness. Proceedings of ASME turbo expo 2008, GT2008-51296, Berlin Germany, (2008).

    Google Scholar 

  54. Hsiang, L.P., Faeth, G.M.: Near-Limit Drop Deformation and Secondary Breakup. Int. J. Multiph. Flow 18(5), 635–652 (1992)

    Article  MATH  Google Scholar 

  55. Hsiang, L.P., Faeth, G.M.: Drop deformation and break up due to shok wave and steady disturbances. Int. J. Multiph. Flow 21(4), 545–560 (1995)

    Article  MATH  Google Scholar 

  56. Ihnatowicz, E.; Gumkowski, S.; Mikielewicz, J.: Experimental study of evaporation and breakdown of thin liquid films driven by shear stresses, in: ASME paper No. 77-WA/HT-7, (1977).

    Google Scholar 

  57. Ishizaka, K., Ikohagi, T., Daiguji, H.: A High-Resolution Finite Difference Scheme for Supersonic Wet-Stream Flows. Proc. 6th Int. Symp. Comput. Fluid Dyn. 1, 479–484 (1995)

    Google Scholar 

  58. Kalikmanov, V.: Mean-field kinetic nucleation theory. J. Chem. Phys. 124, 124505–124510 (2006)

    Article  Google Scholar 

  59. Kawagishi, H., Onoda, A., Shibukawa, N., Niiseki, Y.: Development of Moisture Loss Models in Steam Turbines. JSME B 77(775), 882–893 (2011)

    Article  Google Scholar 

  60. Kolovratník, M.; Hruby, J., Ždímal, V.; Bartoš, O.; Jiříček, I.; Moravec, P.; Zíková, N.: Measurements of heterogeneous particles in superheated steam turbines. Baumann centenary conference. Paper N. BCC-2012-11, Cambridge UK, (2012).

    Google Scholar 

  61. Kolovratník, M., Hruby, J., Ždímal, V., Bartoš, O., Jiříček, I., Moravec, P., Zíková, N.: Nano particles found in superheated steam: a quantitative analysis of possible heterogeneous condensation nuclei. Proc. Inst. Mech. Eng. Part A: J. Power Energy 228, 186–193 (2014)

    Article  Google Scholar 

  62. Lee, B., Riu, K., Liu, G.R., Lam, K.Y.: Development of a Water Droplet Erosion Model for Large Steam Turbine Blades. KSME Int. J. 17(1), 114–121 (2003)

    Article  Google Scholar 

  63. Lefebvre, A.H.: Atomisation and Sprays. Combustion, 1. Aufl. Taylor & Francis, ■ (1989)

    Google Scholar 

  64. Lesser, M.B.: Analytic Solution of Liquid-Drop Impact Problems. Proc. R. Soc. Lond. Ser. A 377(1770), 289–308 (1981)

    Article  MathSciNet  Google Scholar 

  65. Lesser, M.B., Field, J.E.: The impact of compressible liquids. Ann. Rev. Fluid Mech 15, 97–122 (1983)

    Article  Google Scholar 

  66. Liu, M., Liu, G.R., Lam, K.Y.: Investigations into water mitigation using a meshless particle method. Shock Waves 12, 181–195 (2002)

    Article  Google Scholar 

  67. Ma, Q.-F., Hu, D.-P., Jiang, J.-Z., Qiu, Z.-H.: A turbulent Eulerian multifluid model for homogeneous nucleation of water vapour in transonic flow. Int. J. Comput. Fluid Dyn. 23(3), 221–231 (2009)

    Article  MATH  Google Scholar 

  68. Mani, M., Mandre, S., Brennen, M.: Events Before Droplet Splashing on a Solid Surface. J. Fluid. Mech. 647, 163–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Marmottant, P., Villermaux, E.: On spray formation. J. Fluid Mech. 498, 73–111 (2004)

    Article  MATH  Google Scholar 

  70. Mei, Y., Guha, A.: Modification of the upwind schemes for the computation of condensing twophase flows. Proc. Inst. Mech. Engrs. Part A: J. Power Energy 220(7), 809–814 (2006)

    Article  Google Scholar 

  71. Meyers, M.A.: Dynamic behavior of materials. John Wiley & Sons, New York (1994)

    Book  MATH  Google Scholar 

  72. Miyake, S.; Sasao, Y.; Yamamoto, S.; Tabate, S.; Miyawaki, T.; Ooyama, H.: Simulation of unsteady 3-D wet-stream Flows through Three-Stage Stator-Rotor Blade Rows with Equilibrium and Nonequilibrium Condensations. Proceedings of ASME Turbo Expo 2012, GT2012-68828, June 11–12, Copenhagen, Denmark, (2012).

    Google Scholar 

  73. Moore, M.J., Langford, R.W., Tipping, J.C.: Research at C.E.R.L on turbine blade erosion. Proc Imeche Conf. Wet Steam 182,, 61–68 (1968)

    Google Scholar 

  74. Moore, M.J.; Walters, P.T.; Crane, R.I.; Davidson, B.J.: Predicting the fog-drop size in wet-steam turbines. Inst. of Mechanical Engineers, Wet Steam 4 Conf., Paper C37/73, University of Warwick, UK, (1973).

    Google Scholar 

  75. Morsi, S.A., Alexander, A.J.: An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Dyn. 55(2), 193–208 (1972)

    MATH  Google Scholar 

  76. Moraga, F.J.; Vysohlid, M.; Gerber, A.; Smelova, N.; Atheya, S.; Kanakala, V.: CFD Predictions of efficiency for non-equilibrium steam 2D cascades. Proceedings of ASME Turbo Expo 2012, GT2012-68368, July 11–15, Copenhagen, Denmark, (2012).

    Google Scholar 

  77. Moraga, F.J.; Vyshohlid, M.; Smelova, N.; Mistry, H.; Athey, S.; Kanakala, V.: A Flux-Conversation Mixing Plane Algorithm for Multiphase Non-Equilibrium Stream Models. Proceedings of ASME Turbo Expo 2012, GT2012-68660, July 11–15, Copenhagen, Denmark, (2012).

    Google Scholar 

  78. Moraga, F.J.; Wang, L.; Ren, W.-M.: Numerical Sensitivity Study and Calibration of Non-Equilibrium Wet Steam Model. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-94628, June 3–7, San Antonio, Texas, USA, (2013).

    Google Scholar 

  79. Mundo, C.: Zur Sekundärzerstäubung newtonscher Fluide an Oberflächen. Dissertation, Universität Erlangen-Nürberg, 1996.

    Google Scholar 

  80. Nicholls, J.: Stream and Droplet Breakup by Shock Waves. Harrje, D.T.; Reardon, F.H. (Eds.), NASA SP-194, 1972.

    Google Scholar 

  81. Nikkhahi, B., Shams, M., Ziabasharhagh, M.: A numerical investigation of two-phase steam flow around a 2-D turbine’s rotor tip. Int. Commun. Heat Mass Transf. 36(6), 632–639 (2009)

    Article  Google Scholar 

  82. Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Zeitschrift für angewandte Mathematik und Mechanik 16, (1936), Nr. 6, S. 355–358.

    Google Scholar 

  83. Patel, Y.; Patel, G.; Turunen-Saaresti, T.: The Effect of Turbulence and Real Gas Models on the Two Phase Spontaneously Condensing Flows in Nozzle. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-94778, June 3–7, San Antonio, Texas, USA, (2013).

    Google Scholar 

  84. Petr, V.; Kolovratnik, M.: Classical nucleation theory as an adequatemodel in predicting related wet steam effects in LP steam turbines. In: 9th European Conference on Turbomachinery, (2011).

    Google Scholar 

  85. Pilch, M., Erdmann, C.A.: Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop. Int. J. Multiph. Flow 13(6), 741–757 (1987)

    Article  Google Scholar 

  86. van Putten, D.S.; Sidin, R.S.R.; Hagemeijer, R.: Reduced models for the cluster size distribution in isothermal single component condensation. Baumann centenary conference, Paper BCC-2012-05, September, Cambridge, UK, (2012).

    Google Scholar 

  87. Rayleigh, L.: On the stability of jets. Proc. Lond. Math. Soc. 10(1), 4–13 (1878)

    Article  MathSciNet  MATH  Google Scholar 

  88. Reitz, R.D.: Modeling Atomization Processes in High-Pressure Vaporizing Sprays. At. Spray Technol. 3, 309–337 (1987)

    Google Scholar 

  89. Rein, M.: Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12(2), 61–93 (1993)

    Article  Google Scholar 

  90. Rein, M., Delphlanque, J.-P.: The role of air entrainment on the outcome of drop impact on a solid surface. Acta Mech. 201(1), 105–118 (2008)

    Article  MATH  Google Scholar 

  91. Rioboo, R., Marengo, M., Tropea, C.: Time evolution of liquid drop impact onto solid dry surfaces. Exp. Fluids 33(1), 112–124 (2002)

    Article  Google Scholar 

  92. Rochester, M.C., Brunton, J.H.: Pressure distribution during drop impact. In: Field, J.E. (Hrsg.) On erosion by liquid and solid impact Proc. 5th Int. Conf. S. 6.1–6.7. Cavendish laboratory, Camridige (1979)

    Google Scholar 

  93. Roisman, I.V., Horvat, K., Tropea, C.: Spray impact: Rim transverse in stability initiating fingering and splash and description of a secondary spray. Phys. Fluids 18(10), 102--104 (2006)

    Article  MATH  Google Scholar 

  94. Saber, H.H., El-Genk, M.S.: On the breakup of a thin liquid film subject to interfacial shear. J. Fluid Mech. 500, 113–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  95. Samal, M.K., Seidenfuss, M., Roos, E., Dutta, B.K., Kushawa, H.S.: Finite element formulation of a new nonlocal damage model. Finite Elem. Analysis Des. 6–7(44), 358–371 (2008)

    Article  Google Scholar 

  96. Sasao, Y.; Miyake, S.; Okazaki, K.; Yamamoto, S.: Eulerian-Langrangian Numerical Simulation of wet Steam Flow through multi-stage Turbine. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-95945, June 3–7, San Antonio, Texas, USA, (2013).

    Google Scholar 

  97. Schlichting, H.: Boundary Layer Theory. Springer, Berlin, Germany (1968)

    MATH  Google Scholar 

  98. Schleizer, A.D., Bonnecaze, R.T.: Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows. J. Fluid Mech. 383, 29–54 (1999)

    Article  MATH  Google Scholar 

  99. Scheider, I.; Schödel, I.M.; Schönfeld, W.; Brocks, W.: Modelling Crack Extension in Biaxially Loaded Panels. In: Carpinteri, A. (ed.) 11th International Conference on Fracture, (2005).

    Google Scholar 

  100. Senoo, S., Shikano, Y.: Two-Dimensional Analysis for Non-Equilibrium Homogeneously Condensing Flows through Steam Turbine Cascade. Jsme Int. J. 45(4), 865–871 (2002)

    Article  Google Scholar 

  101. Simpson, D.A., White, A.J.: Viscous and unsteady flow calculation of condensing steam in nozzles. Int. J. Heat Fluid Flow 26(1), 71–79 (2005)

    Article  Google Scholar 

  102. Simon, J.-F.: Contribution to throughflowmodelling for axial flow turbomachines. PhD Thesis, University of Liège, 2007.

    Google Scholar 

  103. Slater, S., Leeming, A., Young, J.: Particle deposition from two-dimensional turbulent gas flows. Int. J. Multiph. Flow 29(5), 721–750 (2003)

    Article  MATH  Google Scholar 

  104. Smith, A.: The influence of moisture on the efficiency of a one-third scale model low pressure steam turbine. In: Symposium on wet steam, London, (1966), pp. 39–49.

    Google Scholar 

  105. Snoeck, J.: Calculation of Mixed Flows with Condensation in One Dimensional Nozzle, Aero-Thermodynamics of Steam Turbines. 10 Copyright © 2013 by ASME, ASME H 11-18, (1981).

    Google Scholar 

  106. Springer, G.S.: Erosion by Liquid Impact. Scripta Publishing Co, ■ (1976)

    Google Scholar 

  107. Stastny, M.; Sejna, M.: The Effect of Expansion Rate on the Steam Flow with Hetero-Homogeneous Condensation in Nozzles. Proc. Intsn. Mech. Engrs. 219, Part A: J. Power and Energy, (2005), pp. 491–497.

    Google Scholar 

  108. Starzmann, J.; Casey, M.V.; Mayer, J.F.; Sieverding, F.: Wetness loss prediction for a low pressure steam turbine using CFD. Proc. Baumann Centenary Conference, Paper BCC-2012-14, Cambridge, UK, (2012).

    Google Scholar 

  109. Steinberg, D.J.: Spherical explosions and the equation of state of water. Report UCID-20974, (1987).

    Google Scholar 

  110. Stephenson, D.J., Nicholls, J.R.: Modelling erosive wear. Corros. Sci. 5–8(35), 1015–1026 (1993)

    Article  Google Scholar 

  111. Stow, C.D.; Hadfield, M.G.: An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proceedings of the Royal Society of London 373, (1981), Issue 1755.

    Google Scholar 

  112. Surov, V.S.; Ageyev, S.G.: Initial Stage in the Impingement of a Water Drop onto a Compressible Baffle. Fluid Mechanics – Soviet Research, Bd. 6 (1989), Issue 18.

    Google Scholar 

  113. Talbot, L., Cheng, R., Schefer, R., Willis, D.: Thermophoresis of particles in a heated boundary layer. J. Fluid. Mech. 101(4), 737–758 (1980)

    Article  Google Scholar 

  114. Tanuma, T., Sasao, Y., Yamamoto, S., Niizeki, Y., Shibukawa, N., Saeki, H.: Numerical Investigation of Three-Dimensional Wet Steam Flows in an Exhaust Diffuser with Non-uniform Inlet Flows From the Turbine Stages in a Steam Turbine. Proc. ASME Turbo Expo ■, GT2012–69496 (2012)

    Google Scholar 

  115. Traupel, W.: Thermische Turbomaschinen Bd. 1. Springer, Berlin Heidelberg New York (1988)

    MATH  Google Scholar 

  116. Tsukuda, T.; Kawagishi, H.; Shibukawa, N.; Hashidate, T.; Goto, K.: Influence of wetness on efficiency of the full scale Size Low Pressure Turbines. Proceedings of ASME Turbo Expo 2012, June 11–15, Copenhagen, Denmark, (2012).

    Google Scholar 

  117. Urban, J.: Numerische Untersuchung und Modellierung von Tropfen-Wand Interaktionen. Dissertation, Universität Stuttgart, 1999.

    Google Scholar 

  118. Villermaux, E.: On the role of viscosity in shear instabilities. Phys. Fluids 10(2), 368–373 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  119. Völker, L.; Casey, M.; Neef, M.; Stüer, H.: The Flow Field and Performance of a Model Low Pressure Steam Turbine. In: Proceedings of ETC6 – 6th Conference on Turbomachinery, Paper AFT–022_05, March 07–11, Lille, France, (2005).

    Google Scholar 

  120. Walter, P.T.: Wetness and Efficiency Measurements in L-P Turbines With an Optical Probe as an Aid to Improving Performance. ASME Paper 85-JPGC-GT-9, (1985).

    Google Scholar 

  121. Walzel, P.: Zerstäuben von Flüssigkeiten. Chem. Ing. Tech. 62(12), 983–994 (1990)

    Article  Google Scholar 

  122. Van der Wal, R.L., Berger, G.M.: The splash/non-splash boundary upon a surface and thin fluid film. Exp. Fluids 40(1), 53–59 (2006)

    Article  Google Scholar 

  123. Wang, Y.-F., Yang, Z.-G.: Finite element model of erosive wear on ductile and brittle materials. Wear 5–6(265), 871–878 (2008)

    Article  Google Scholar 

  124. Wawrzynek, P.; Ingraffea, A.: FRANC2D: A Two Dimensional Crack Propagation Simulator. User’s Guide, Version 3.1, Cornell Fracture Group, 1993.

    Google Scholar 

  125. White, F.M.: Viscous Fluid Flow, 2. Aufl. McGraw-Hill, New York (1991)

    Google Scholar 

  126. White, A.J., Young, J.B., Walters, P.T.: Experimental validation of condensing flow theory for a stationary cascade of steam turbine blades. Phil. Trans. Roy. Soc. Lond. A 354(1704), 59–98 (1996)

    Article  Google Scholar 

  127. White, A.; White, B.: Transient Calculations of Nucleation and Droplet Growth for Wet-Steam Expansions. In: 15th International Conference on the Properties of Water and Steam (ICPWS XV), Sept 8–11, Berlin, Germany, (2008).

    Google Scholar 

  128. Wilkins, M.L.: Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36(3), 281–303 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  129. Williams, J.; Young, J.: Movement of deposited water on turbomachinery rotor blade surfaces. In: ASME Turbo Expo: Power for Land, Sea, and Air, Volume 6: Turbomachinery, Parts A and B, GT2006-90792, May 8–11, Barcelona, Spain, (2006), pp. 1407–1420.

    Google Scholar 

  130. Woytowitz, P.J., Richman, R.H.: Modelling of damage from multiple impacts by spherical particles. Wear 233–235, 120–133 (1999)

    Article  Google Scholar 

  131. Wroblewski, W., Dykas, S., Gepert, A.: Steam Condensing Flow Modeling in Turbine Channels. Int. J. Multphase Flow 35(6), 498–506 (2009)

    Article  Google Scholar 

  132. Xu, L., Zhang, W.W., Nagel, S.R.: Drop Splashing on a Dry Smooth Surface. Phys. Rev. Lett. 94(18), 184--505 (2005)

    Article  Google Scholar 

  133. Yamamoto, S., Sasao, Y.; Kato, H.; Satsuki, H.; Ooyama, H.; Ishizaka, K.: Numerical and Experimental Investigations of Unsteady 3-D Wet-Steam Flows Through Two-Stage Stator-Rotor Cascade Channels. ASME Turbo Expo 2010: Power for Land, Sea, and Air, Volume 7 Turbomachinery Parts A, B and C, GT2010-22796, June 14–18, Glasgow, UK, (2010), pp. 2257–2265.

    Google Scholar 

  134. Yarin, A.L., Weiss, D.A.: Impact of drops on solid surfaces: selfsimilar capillary waves and splashing as a new kind of kinematic discontinuity. J. Fluid Mech. 283, 141–173 (1995)

    Article  Google Scholar 

  135. Yarin, A.L.: Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  136. Young, J.B.: The spontaneous condendation of steam in supersonic nozzles. Phys. Chem. Hydrodyn. 3, 57–82 (1982)

    Google Scholar 

  137. Young, J., Yau, K., Walters, P.: Fog droplet deposition and coarse water formation in low pressure steam turbines: a combined experimental and theoretical analysis. J. Turbomach. 110(2), 163–172 (1988)

    Article  Google Scholar 

  138. Young, J., Yau, K.: The inertial deposition of fog droplets on steam turbine blades. J. Turbomach. 110, 155--162 (1988)

    Article  Google Scholar 

  139. Young, J.B.: Two Dimensional Non-Equilibrium Wet Steam Calculations for Nozzles and Turbine Cascade. J. Turbomach. 114(3), 569–579 (1992)

    Article  Google Scholar 

  140. Young, J., Leemng, A.: A theory of particle deposition in turbulent pipe flow. J. Fluid. Mech. 340, 129–159 (1997)

    Article  Google Scholar 

  141. Zaichik, L.; Nagmatulin, B.; Pershukov, V.: Modelling of dynamics of aerosols in near-wall turbulent flows and particle deposition in pipes. Advances in Multiphase Flow, 1995.

    Google Scholar 

  142. Zhu, X.; Yuan, X.Z.L.; Shibukawa, N.; Tsukuda, T.; Niizeki, Y.; Tanuma, T.: An Upwind Eulerian-Eulerian Model for Non-Equilibrium Condensation in Steam Turbines. Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT2013-95047, June 3–7, San Antonio, Texas, USA, (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joos, F., Neupert, N. (2018). Modellierung der Zweiphasenströmung. In: aus der Wiesche, S., Joos, F. (eds) Handbuch Dampfturbinen. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-20630-7_5

Download citation

Publish with us

Policies and ethics