Skip to main content

Promising applications of synthetic biology – and how to avoid their potential pitfalls

  • Chapter
  • First Online:
Synthetic Biology

Abstract

Synthetic biology is associated with great expectations as well as grave concerns. Currently, due to the small number of concrete applications, an assessment of innovations in synthetic biology has to start with an analysis of early indicators of both the opportunities and the risk-relevant features of expected applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amidi, M., Raad, M., Crommelin, D.A., Hennink, W., & Mastrobattista, E. (2011). Antigen- expressing immunostimulatory liposomes as a genetically programmable synthetic vaccine. Systems and Synthetic Biology, 5(1–2), 21–31. doi: 10.1007/s11693–010-9066-z.

    Article  Google Scholar 

  • Ashby, M.F., Gibson, L.J., Wegst, U., & Olive, R. (1995). The Mechanical Properties of Natural Materials. I. Material Property Charts. Proceedings of the Royal Society. Mathematical and Physical Sciences, 450(1938), 123–140.

    Google Scholar 

  • Barthelat, F., & Zhu, D. (2011). A novel biomimetic material duplicating the structure and mechanics of natural nacre. Journal of Materials Research, 26(10), 1203–1215. doi: 10.1557/jmr.2011.65.

    Article  Google Scholar 

  • Bromley, E.H.C., Channon, K., Moutevelis, E., & Woolfson, D.N. (2008). Peptide and protein building blocks for synthetic biology: From programming biomolecules to self-organized biomolecular systems. ACS Chemical Biology, 3(1), 38–50. doi: 10.1021/ cb700249v.

    Google Scholar 

  • Brooks, A.E., Stricker, S.M., Joshi, S.B., Kamerzell, T.J., Middaugh, C.R., & Lewis, R.V. (2008). Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules, 9(6), 1506–1510. doi: 10.1021/bm701124p.

    Article  Google Scholar 

  • Brubaker, C.E., & Messersmith, P.B. (2012). The present and future of biologically inspired adhesive interfaces and materials. Langmuir, 28(4), 2200–2205. doi: 10.1021/la300044v.

    Article  Google Scholar 

  • Buehler, M.J. (2010). Multiscale Mechanics of Biological and Biologically Inspired Materials and Structures. Acta Mechanica Solida Sinica, 23(6), 471–483.

    Article  Google Scholar 

  • Bugaj, L.J., & Schaffer, D.V. (2012). Bringing Next-Generation Therapeutics to the Clinic through Synthetic Biology. Current Opinion in Chemical Biology, 16(3–4), 355–361. doi: 10.1016/j.cbpa.2012.04.009.

    Article  Google Scholar 

  • Cachat, E., & Davies, J.A. (2011). Application of Synthetic Biology to Regenerative Medicine. Journal of Bioengineering and Biomedical Sciences, S2, 1–9. doi: 10.4172/2155–9538.s2–003.

    Google Scholar 

  • Canton, B., Labno, A., & Endy, D. (2008). Refinement and standardization of synthetic biological parts and devices. Nature Biotechnology, 26(7), 787–793. doi: 10.1038/nbt1413.

    Article  Google Scholar 

  • Chung, H., Kim, T.Y., & Lee, S.Y. (2012). Recent advances in production of recombinant spider silk proteins. Current Opinion in Biotechnology, 23(6), 957–964. doi: 10.1016/j. copbio.2012.03.013.

    Google Scholar 

  • Cooney, M.J., Svoboda, V., Lau, C., Martin, G., & Minteer, S.D. (2008). Enzyme catalysed biofuel cells. Energy & Environmental Science, 1(3), 320–337.

    Article  Google Scholar 

  • Das, S., Priess, J.A., & Schweitzer, C. (2010). Biofuel Options for India-Perspectives on Land Availability, Land Management and Land-Use Change. Journal of Biobased Materials and Bioenergy, 4(3), 243–255. doi: 10.1166/Jbmb.2010.1089.

    Article  Google Scholar 

  • DeWall, M.T., & Cheng, D.W. (2011). The minimal genome: a metabolic and environmental comparison. Briefings in Functional Genomics, 10(5), 312–315. doi: 10.1093/bfgp/elr030.

    Article  Google Scholar 

  • Dietz, S., & Panke, S. (2010). Microbial systems engineering: first successes and the way ahead. Bioessays, 32(4), 356–362. doi: 10.1002/bies.200900174.

    Article  Google Scholar 

  • Doktycz, M.J., & Simpson, M.L. (2007). Nano-enabled synthetic biology. Molecular Systems Biology, 3, 125. doi: 10.1038/msb4100165.

    Article  Google Scholar 

  • Dunlop, J.W.C., & Fratzl, P. (2012). Multilevel architectures in natural materials. Scripta Materialia, 68(1), 8–12. doi: 10.1016/j.scriptamat.2012.05.045.

    Article  Google Scholar 

  • Dymond, J.S., Richardson, S.M., Coombes, C.E., Babatz, T., Muller, H., Annaluru, N., … Boeke, J.D. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 477(7365), 471–476.

    Article  Google Scholar 

  • Eisoldt, L., Smith, A., & Scheibel, T. (2011). Decoding the secrets of spider silk. Materials Today, 14(3), 80–86. doi: 10.1016/S1369–7021(11)70057–8.

    Article  Google Scholar 

  • Eldar, A. & Elowitz, M.B. (2010). Functional roles for noise in genetic circuits. Nature, 467(7312), 167–173.

    Article  Google Scholar 

  • ETC (2010). ETC Group. The New Biomassters. Synthetic Biology and the Next Assault on Biodiversity and Livelihoods. http://www.etcgroup.org/sites/www.etcgroup.org/files/biomassters_27feb2011.pdf. Accessed: 24 March 2014.

  • Evonik (2013). Synthesegas schmeckt Bakterien. Press release of 4 December 2013. Evonik Industries AG. http://corporate.evonik.de/de/presse/suche/pages/news-details.aspx-?newsid=40323. Accessed: 21 May 2015.

  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238. doi: 10.1126/science.1152747.

    Article  Google Scholar 

  • Fast, A.G., & Papoutsakis, E.T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Current Opinion in Chemical Engineering, 1(4), 380–395. doi: 10.1016/j.coche.2012.07.005.

    Article  Google Scholar 

  • FoE (2010). Friends of the Earth. Synthetic Solutions to the Climate Crisis: The Dangers of Synthetic Biology for Biofuels Production. Report. http://libcloud.s3.amazonaws.com/93/59/9/529/1/SynBio-Biofuels_Report_Web.pdf. Accessed: 25 March 2014.

  • Folcher, M., & Fussenegger, M. (2012). Synthetic Biology Advancing Clinical Applications. Current Opinion in Chemical Biology, 16(3–4), 345–354. doi: 10.1016/j.cbpa.2012.06.008.

    Article  Google Scholar 

  • Fortman, J.L., Chhabra, S., Mukhopadhyay, A., Chou, H., Lee, T.S., Steen, E., & Keasling, J.D. (2008). Biofuel alternatives to ethanol: pumping the microbial well. Trends in biotechnology, 26(7), 375–381.

    Article  Google Scholar 

  • Fratzl, P., & Barth, F.G. (2009). Biomaterial systems for mechanosensing and actuation. Nature, 462(7272), 442–448. doi: 10.1038/nature08603.

    Article  Google Scholar 

  • Gitzinger, M., Kemmer, C., El-Baba, M. D., Weber, W., & Fussenegger, M. (2009). Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proceedings of the National Academy of Sciences, 106(26), 10638–10643. doi: 10.1073/pnas.0901501106.

    Google Scholar 

  • Grunwald, I., Rischka, K., Kast, S.M., Scheibel, T., & Bargel, H. (2009). Mimicking biopolymers on a molecular scale: nano(bio)technology based on engineered proteins. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 367(1894), 1727–1747. doi: 10.1098/rsta.2009.0012.

    Article  Google Scholar 

  • Guterl, J.-K., & Sieber, V. (2013). Biosynthesis “debugged”: Novel bioproduction strategies. Engineering in Life Sciences, 13(1), 4–18. doi: 10.1002/elsc.201100231.

    Article  Google Scholar 

  • Hawkins, A.S., McTernan, P.M., Lian, H., Kelly, R.M. &, Adams, M.W.W. (2013). Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Current Opinion in Biotechnology, 24(3), 376–384. doi: 10.1016/j.copbio.2013.02.017.

    Article  Google Scholar 

  • Hayashi, C.Y. (2000). Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene. Science, 287(5457), 1477–1479. doi: 10.1126/science.287.5457.1477.

    Article  Google Scholar 

  • Kastenhofer, K., & Schmidt, J.C. (2011). On Intervention, Construction and Creation: Power and Knowledge in Technoscience and Late-Modern Technology. In: T.B. Zülsdorf, C. Coenen, A. Ferrari, U. Fiedeler, C. Milburn, M. Wienroth (eds.), Quantum Engagements: Social Reflections of Nanoscience and Emerging Technologies (pp. 177–194). Heidelberg: Akademische Verlagsgesellschaft.

    Google Scholar 

  • Keerl, D., & Scheibel, T. (2012). Characterization of natural and biomimetic spider silk fibers. Bioinspired, Biomimetic and Nanobiomaterials, 1(2), 83–94. doi: 10.1680/bbn.11.00016.

    Article  Google Scholar 

  • Khalil, A.S., & Collins, J.J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367–379.

    Article  Google Scholar 

  • Kiely, P.D., Regan, J.M., & Logan, B.E. (2011). The Electric Picnic: Synergistic Requirements for Exoelectrogenic Microbial Communities. Current Opinion in Biotechnology, 22(3), 378–385. doi: 10.1016/j.copbio.2011.03.003.

    Article  Google Scholar 

  • Kim, J., & Winfree, E. (2011). Synthetic in vitro transcriptional oscillators. Molecular Systems Biology, 7(465), 465–465. doi: 10.1038/msb.2010.119.

    Google Scholar 

  • Kittleson, J.T., Wu, G.C., & Anderson, J.C. (2012). Successes and failures in modular genetic engineering. Current Opinion in Chemical Biology, 16(3–4), 329–336. doi: 10.1016/j. cbpa.2012.06.009.

    Google Scholar 

  • Laaksonen, P., Walther, A., Malho, J.-M., Kainlauri, M., Ikkala, O., & Linder, M. B. (2011). Genetic Engineering of Biomimetic Nanocomposites: Diblock Proteins, Graphene, and Nanofibrillated Cellulose. Angewandte Chemie International Edition, 50, 8688–8691. doi: 10.1002/anie.201102973.

    Article  Google Scholar 

  • Lacroix, R., McKemey, A.R., Raduan, N., Wee, L.K., Ming, W.H., Ney, T.G., … Murad, S. (2012). Open field release of genetically engineered sterile male Aedes aegypti in Malaysia. PLOS ONE, 7(8), e42771.

    Google Scholar 

  • LaMonica, M. (2014). Why the Promise of Cheap Fuel from Super Bugs Fell Short. MIT Technology Review, 5 February 2014. http://www.technologyreview.com/news/524011/why-the-promise-of-cheap-fuel-from-super-bugs-fell-short/. Accessed: 8 July 2014.

  • Larregola, M., Moore, S., & Budisa, N. (2012). Congeneric bio-adhesive mussel foot proteins designed by modified prolines revealed a chiral bias in unnatural translation. Biochemical and Biophysical Research Communications, 421(4), 646–650. doi: 10.1016/j.bbrc.2012.04.031.

    Article  Google Scholar 

  • Li, H., & Liao, J.C. (2013). Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels. Energy & Environmental Science, 6(10), 2892–2899. doi: 10.1039/c3ee41847b.

    Article  Google Scholar 

  • Liang, J.F., Li, Y.T., & Yang, V.C. (2000). Biomedical Application of Immobilized Enzymes. Journal of Pharmaceutical Sciences, 89(8), 979–990.

    Article  Google Scholar 

  • Liu, K. & Jiang, L. (2011). Bio-inspired design of multiscale structures for function integration. Nano Today, 6(2), 155–175. doi: 10.1016/j.nantod.2011.02.002.

    Article  Google Scholar 

  • Lorenzo, V. d. (2008). Systems biology approaches to bioremediation. Current Opinion in Biotechnology, 19(6), 579–589. doi: 10.1016/j.copbio.2008.10.004.

    Article  Google Scholar 

  • Lovley, D.R., & Nevin, K.P. (2013). Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Current Opinion in Biotechnology, 24(3), 385–390. doi: 10.1016/j.copbio.2013.02.012.

    Article  Google Scholar 

  • Marliere, P. (2009). The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Systems and Synthetic Biology, 3, 77–84.

    Article  Google Scholar 

  • Matosevic, S., Lye, G.J., & Baganz, F. (2010). Design and characterization of a prototype enzyme microreactor: quantification of immobilized transketolase kinetics. Biotechnology Progress, 26(1), 118–126. doi: 10.1002/btpr.319.

    Google Scholar 

  • Moe-Behrens, G.H., Davis, R., & Haynes, K.A. (2013). Preparing synthetic biology for the world. Frontiers in Microbiology, 4, 1–10. doi: 10.3389/fmicb.2013.00005.

    Article  Google Scholar 

  • Moutevelis, E., & Woolfson, D.N. (2009). A periodic table of coiled-coil protein structures. Journal of Molecular Biology, 385(3), 726–732. doi: 10.1016/j.jmb.2008.11.028.

    Article  Google Scholar 

  • Mudgal, S., Toni, A. d., Tostivint, C., Hokkanen, H., & Chandler, D. (2013). Scientific support, literature review and data collection and analysis for risk assessment on microbial organisms used as active substance in plant protection products –Lot 1 Environmental Risk characterisation. EFSA supporting publications 2013: EN –518. http://www.efsa.europa.eu/en/efsajournal/doc/518e.pdf. Accessed: 21 May 2015.

  • Mutalik, V.K., Guimaraes, J.C., Cambray, G., Lam, C., Christoffersen, M.J., Mai, Q.A., … Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature methods, 10(4), 354–360.

    Article  Google Scholar 

  • Nicklisch, S.C., & Waite, J.H. (2012). Mini-review: the role of redox in Dopa-mediated marine adhesion. Biofouling, 28(8), 865–877. doi: 10.1080/08927014.2012.719023.

    Article  Google Scholar 

  • Noireaux, V., & Libchaber, A. (2004). A vesicle bioreactor as a step toward an artificial cell assembly. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17669–17674. doi: 10.1073/pnas.0408236101.

    Google Scholar 

  • Nordmann, A. (2011). Science in the Context of Technology. Boston Studies in the Philosophy and History of Science, 274(6), 467–482.

    Article  Google Scholar 

  • Nourian, Z., Roelofsen, W., & Danelon, C. (2012). Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angewandte Chemie International Edition, 51(13), 3114–3118. doi: 10.1002/anie.201107123.

    Article  Google Scholar 

  • Oberholzer, T., Nierhaus, K.H., & Luisi, P.L. (1999). Protein Expression in Liposomes. Biochemical and Biophysical Research Communications, 261(2), 238–241.

    Article  Google Scholar 

  • Paschen, H., & Petermann, T. (1992). Technikfolgen-Abschätzung. Ein strategisches Rahmenkonzept für die Analyse und Bewertung von Techniken. In: T. Petermann (ed.), Technikfolgen- Abschätzung als Technikforschung und Politikberatung (pp. 19–42). Frankfurt/ Main: Campus.

    Google Scholar 

  • Porter, D., & Vollrath, F. (2009). Silk as a Biomimetic Ideal for Structural Polymers. Advanced Materials, 21(4), 487–492. doi: 10.1002/adma.200801332.

    Article  Google Scholar 

  • Puri, A., Loomis, K., Smith, B., Lee, J.H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews in Therapeutic Drug Carrier Systems, 26(6), 523–580.

    Article  Google Scholar 

  • Rabaey, K., Girguis, P. & Nielsen, L.K. (2011). Metabolic and Practical Considerations on Microbial Electrosynthesis. Current Opinion in Biotechnology, 22(3), 371–377. doi: 10.1016/j.copbio.2011.01.010.

    Article  Google Scholar 

  • Robins, K.J., Hooks, D.O., Rehm, B.H., & Ackerley, D.F. (2013). Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLOS ONE, 8(3), e59200. doi: 10.1371/ journal.pone.0059200.

    Article  Google Scholar 

  • Saxena, D., & Stotzky, G. (2001). BT corn has a higher lignin content than non-BT corn. American Journal of Botany, 88(9), 1704–1706.

    Article  Google Scholar 

  • Schamel, W.W.A., & Reth, M. (2012). Synthetic immune signaling. Current Opinion in Biotechnology, 23(5), 780–784. doi: 10.1016/j.copbio.2012.01.010.

    Article  Google Scholar 

  • Schmidt, M., & Lorenzo, V. d. (2012). Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. FEBS Letters, 586(15), 2199–2206. doi: 10.1016/j.febslet.2012.02.022.

    Article  Google Scholar 

  • Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., … Yu, T.H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240.

    Article  Google Scholar 

  • Shin, J., & Noireaux, V. (2012). An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synthetic Biology, 1(1), 29–41. doi: 10.1021/sb200016s.

    Article  Google Scholar 

  • Sia, S.K., Gillette, B.M., & Yang, G.J. (2007). Synthetic tissue biology: Tissue engineering meets synthetic biology. Birth Defects Research Part C: Embryo Today: Reviews, 81(4), 354–361. doi: 10.1002/bdrc.20105.

    Article  Google Scholar 

  • Silverman, H.G. & Roberto, F.F. (2007). Understanding marine mussel adhesion. Marine Biotechnology, 9(6), 661–681. doi: 10.1007/s10126–007-9053-x.

    Article  Google Scholar 

  • Singh, R. (2011). Facts, Growth, and Opportunities in Industrial Biotechnology. Organic Process Research & Development, 15(1), 175–179.

    Article  Google Scholar 

  • Sponner, A., Vater, W., Monajembashi, S., Unger, E., Grosse, F., & Weisshart, K. (2007). Composition and Hierarchical Organisation of a Spider Silk. PLOS ONE, 2(10), e998. doi: 10.1371/journal.pone.0000998.

    Article  Google Scholar 

  • Stanton, B.C., Nielsen, A.A.K., Tamsir, A., Clancy, K., Peterson, T., & Voigt, C.A. (2013). Genomic mining of prokaryotic repressors for orthogonal logic gates. Nature Chemical Biology, 10, 99–105. doi: 10.1038/nchembio.1411.

    Article  Google Scholar 

  • Sun, J., & Bhushan, B. (2012). Hierarchical structure and mechanical properties of nacre: a review. RSC Advances, 2(20), 7617. doi: 10.1039/c2ra20218b.

    Article  Google Scholar 

  • Tarakanova, A., & Buehler, M.J. (2012). A Materiomics Approach to Spider Silk: Protein Molecules to Webs. Jom, 64(2), 214–225. doi: 10.1007/s11837–012-0250–3.

    Article  Google Scholar 

  • Tucker, J., & Zilinskas, R. (2006). The promise and perils of synthetic biology. The New Atlantis, 12(1), 25–45.

    Google Scholar 

  • Vincent, J.F.V. (2008). Biomimetic Materials. Journal of Materials Research, 23(12), 3140–3147. doi: 10.1557/jmr.2008.0380.

    Article  Google Scholar 

  • Vollrath, F. (2000). Strength and structure of spiders’ silks. Journal of Biotechnology, 74(2), 67–83.

    Google Scholar 

  • Vollrath, F., & Knight, D.P. (2001). Liquid crystalline spinning of spider silk. Nature, 410(6828), 541–548. doi: 10.1038/35069000.

    Article  Google Scholar 

  • Wang, H.H., & Church, G.M. (2011). Multiplexed Genome Engineering and Genotyping Methods: Applications for Synthetic Biology and Metabolic Engineering. Methods in Enzymology, 498, 409–426.

    Article  Google Scholar 

  • Whitesides, G.M., & Wong, A.P. (2006). The Intersection of Biology and Materials Science. MRS Bulletin, 31(01), 19–27. doi: 10.1557/mrs2006.2.

    Article  Google Scholar 

  • Widmaier, D.M., Tullman‐Ercek, D., Mirsky, E.A., Hill, R., Govindarajan, S., Minshull, J., & Voigt, C.A. (2009). Engineering the Salmonella type III secretion system to export spider silk monomers. Molecular Systems Biology, 5(1), 309. doi: 10.1038/msb.2009.62.

    Google Scholar 

  • Wiegemann, M. (2005). Adhesion in blue mussels (Mytilus edulis) and barnacles (genus Balanus): Mechanisms and technical applications. Aquatic Sciences, 67(2), 166–176. doi: 10.1007/s00027–005-0758–5.

    Article  Google Scholar 

  • Wright, O., Stan, G.B., & Ellis, T. (2013). Building-in biosafety for synthetic biology. Microbiology, 159(Pt 7), 1221–1235. doi: 10.1099/mic.0.066308–0.

    Article  Google Scholar 

  • Xia, X.-X., Qian, Z.-G., Ki, C.S., Park, Y.H., Kaplan, D.L., & Lee, S.Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14059–14063. doi: 10.1073/pnas.1003366107.

    Google Scholar 

  • Yang, Z., Hutter, D., Sheng, P., Sismour, A.M., & Benner, S.A. (2006). Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Research, 34(21), 6095–6101. doi: 10.1093/nar/gkl633.

    Article  Google Scholar 

  • Yeh, B.J., & Lim, W.A. (2007). Synthetic biology: lessons from the history of synthetic organic chemistry. Nature Chemical Biology, 3(9), 521–525.

    Article  Google Scholar 

  • Yong, Y.-C., Yu, Y.-Y., Li, C.-M., Zhong, J.-J., & Song, H. (2011). Bioelectricity Enhancement via Overexpression of Quorum Sensing System in Pseudomonas aeruginosa-Inoculated Microbial Fuel Cells. Biosensors & Bioelectronics, 30(1), 87–92. doi: 10.1016/j.bios.2011.08.032.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Giese, B., Wigger, H., Pade, C., von Gleich, A. (2016). Promising applications of synthetic biology – and how to avoid their potential pitfalls. In: Boldt, J. (eds) Synthetic Biology. Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-10988-2_13

Download citation

Publish with us

Policies and ethics