Skip to main content

Wege zu neuen Medikamenten gegen Infektionskrankheiten

  • Chapter
  • First Online:
Neue und alte Infektionskrankheiten
  • 4825 Accesses

Zusammenfassung

Die menschliche Lebenserwartung hat sich innerhalb eines relativ kurzen Zeitraums von etwa 100 Jahren nahezu verdoppelt. Ein wesentlicher Faktor war die Verhütung und Behandlung von Infektionskrankheiten durch Impfungen und hochwirksame Medikamente (Antibiotika, Antimykotika, Viruzide). Durch den erfolgreichen Einsatz der Antiinfektiva werden jedoch resistente Erregerformen selektioniert. Deshalb können wir uns bei der Behandlung und Verhütung von Infektionskrankheiten nicht mit dem Erreichten zufrieden geben. Erforderlich wäre vielmehr die fortlaufende Entwicklung neuer Medikamente als Ersatz für Substanzen, die auf Grund der Erregerresistenz nicht mehr für den Einsatz geeignet sind.

Abstract

The human lifespan has been almost doubled over the last century. One of the reasons was the prevention and cure of infectious diseases by vaccination and therapy with highly efficient antibiotics. Unfortunately, the medical application of antibiotics is conducive to the selection of drug‐resistant pathogens. Hence, the therapeutic agents need to be progressively replaced by novel drugs in order to cope with the problem of pathogen resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Arias, C.A. and B.E. Murray, Antibiotic–resistant bugs in the 21st century––a clinical super–challenge. N Engl J Med, 2009. 360(5): p. 439–43.

    Article  PubMed  CAS  Google Scholar 

  2. Woodford, N. and D.W. Wareham, Tackling antibiotic resistance: a dose of common antisense? J Antimicrob Chemother, 2009. 63(2): p. 225–9.

    Article  PubMed  CAS  Google Scholar 

  3. Walsh, C. and G. Wright, Introduction: antibiotic resistance. Chem Rev, 2005. 105(2): p. 391–4.

    Article  PubMed  CAS  Google Scholar 

  4. Neu, H.C., The crisis in antibiotic resistance. Science, 1992. 257(5073): p. 1064–73.

    Article  PubMed  CAS  Google Scholar 

  5. Neu, H.C., et al., Antibiotic resistance. Epidemiology and therapeutics. Diagn Microbiol Infect Dis, 1992. 15(2 Suppl): p. 53S–60S.

    PubMed  CAS  Google Scholar 

  6. Boucher, H.W., et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis, 2009. 48(1): p. 1–12.

    Article  PubMed  Google Scholar 

  7. Pendleton, J.N., S.P. Gorman, and B.F. Gilmore, Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther, 2013. 11(3): p. 297–308.

    Article  PubMed  CAS  Google Scholar 

  8. Schlitzer, M., Malaria: Lebensrettende Prophylaxe und Therapie. Pharmazeutische Zeitung, 2010(12).

    Google Scholar 

  9. Hobhouse, H., Sechs Pflanzen verändern die Welt. Chinarinde, Zuckerrohr, Tee, Baumwolle, Kartoffel, Kokastrauch. 2001: Klett– Cotta.

    Google Scholar 

  10. Fleming, A., On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br J Exp Pathol, 1929. 10(3): p. 226–36.

    CAS  Google Scholar 

  11. Abraham, E.P., et al., Further observations on penicillin. 1941. Eur J Clin Pharmacol, 1992. 42(1): p. 3–9.

    PubMed  CAS  Google Scholar 

  12. Chain, E., et al., Penicillin as a chemotherapeutic agent. 1940. Clin Orthop Relat Res, 1993(295): p. 3–7.

    PubMed  Google Scholar 

  13. Douglas, N.M., et al., Artemisinin combination therapy for vivax malaria. Lancet Infect Dis, 2010. 10(6): p. 405–16.

    Article  PubMed  CAS  Google Scholar 

  14. Helmstädter, A., 100 Jahre Salvarsan: Chemisch auf Erreger zielen Pharmazeutische Zeitung, 2010. 52.

    Google Scholar 

  15. Domagk, G.J.P., Beitrag zur Chemotherapie der bakteriellen Infektionen. Deutsch. Med. Wochenschrift, 1935. 61: p. 250–253.

    Article  CAS  Google Scholar 

  16. Grundmann, E., Gerhard Domagk. Ein Pathologe besiegt die bakteriellen Infektionskrankheiten. Der Pathologe, 2001. 22.

    Google Scholar 

  17. Fischer, M., B. Thöny, and S. Leimkühler, The Biosynthesis of Folate and Pterins and Their Enzymology. Comprehensive Natural Products II: Chemistry and Biology ed. L.M.a.H.–W.B. Liu. Vol. 7. 2010, Oxford: Elsevier.

    Google Scholar 

  18. Reynolds, C.H., B.A. Tounge, and S.D. Bembenek, Ligand binding efficiency: trends, physical basis, and implications. J Med Chem, 2008. 51(8): p. 2432–8.

    Article  PubMed  CAS  Google Scholar 

  19. Fleischmann, R.D., et al., Whole–genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 1995. 269(5223): p. 496–512.

    Article  PubMed  CAS  Google Scholar 

  20. Blundell, T.L., H. Jhoti, and C. Abell, High–throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov, 2002. 1(1): p. 45–54.

    Article  PubMed  CAS  Google Scholar 

  21. Engelman, A. and P. Cherepanov, The structural biology of HIV–1: mechanistic and therapeutic insights. Nat Rev Microbiol, 2012. 10(4): p. 279–90.

    Article  PubMed  CAS  Google Scholar 

  22. Jaskolski, M., et al., Structure at 2.5–A resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene–based inhibitor. Biochemistry, 1991. 30(6): p. 1600–9.

    Article  PubMed  CAS  Google Scholar 

  23. Seelmeier, S., et al., Human immunodeficiency virus has an aspartic– type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci U S A, 1988. 85(18): p. 6612–6.

    Article  PubMed  CAS  Google Scholar 

  24. Kohl, N.E., et al., Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A, 1988. 85(13): p. 4686–90.

    Article  PubMed  CAS  Google Scholar 

  25. Tie, Y., et al., Atomic resolution crystal structures of HIV–1 protease and mutants V82A and I84V with saquinavir. Proteins, 2007. 67(1): p. 232–42.

    Article  PubMed  CAS  Google Scholar 

  26. Houston, J.G., The impact of automation on high–throughput screening. Methods Find Exp Clin Pharmacol, 1997. 19 Suppl A: p. 43–5.

    PubMed  Google Scholar 

  27. Macarron, R., et al., Impact of high–throughput screening in biomedical research. Nat Rev Drug Discov, 2011. 10(3): p. 188–95.

    Article  PubMed  CAS  Google Scholar 

  28. Snowden, M. and D.V. Green, The impact of diversity–based, highthroughput screening on drug discovery: "chance favours the prepared mind". Curr Opin Drug Discov Devel, 2008. 11(4): p. 553–8.

    PubMed  CAS  Google Scholar 

  29. McInnes, C., Virtual screening strategies in drug discovery. Curr Opin Chem Biol, 2007. 11(5): p. 494–502.

    Article  PubMed  CAS  Google Scholar 

  30. Rester, U., From virtuality to reality – Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel, 2008. 11(4): p. 559–68.

    PubMed  CAS  Google Scholar 

  31. Rollinger, J.M., H. Stuppner, and T. Langer, Virtual screening for the discovery of bioactive natural products. Prog Drug Res, 2008. 65: p. 211, 213–49.

    Google Scholar 

  32. Metzker, M.L., Sequencing in real time. Nat Biotechnol, 2009. 27(2): p. 150–1.

    Article  PubMed  CAS  Google Scholar 

  33. Metzker, M.L., Sequencing technologies – the next generation. Nat Rev Genet, 2010. 11(1): p. 31–46.

    Article  PubMed  CAS  Google Scholar 

  34. Diacon, A.H., et al., The diarylquinoline TMC207 for multidrugresistant tuberculosis. N Engl J Med, 2009. 360(23): p. 2397–405.

    Article  PubMed  CAS  Google Scholar 

  35. Haagsma, A.C., et al., Selectivity of TMC207 towards mycobacterial ATP synthase compared with that towards the eukaryotic homologue. Antimicrob Agents Chemother, 2009. 53(3): p. 1290–2.

    Article  PubMed  CAS  Google Scholar 

  36. Matteelli, A., et al., TMC207: the first compound of a new class of potent anti-tuberculosis drugs. Future Microbiol, 2010. 5(6): p. 849–58.

    Article  PubMed  CAS  Google Scholar 

  37. Shang, S., et al., Activities of TMC207, rifampin, and pyrazinamide against Mycobacterium tuberculosis infection in guinea pigs. Antimicrob Agents Chemother, 2011. 55(1): p. 124–31.

    Article  PubMed  CAS  Google Scholar 

  38. Baker, M., Fragment-based lead discovery grows up. Nat Rev Drug Discov, 2013. 12(1): p. 5–7.

    Article  PubMed  CAS  Google Scholar 

  39. Erlanson, D.A., Introduction to fragment-based drug discovery. Top Curr Chem, 2012. 317: p. 1–32.

    PubMed  CAS  Google Scholar 

  40. Rees, D.C., et al., Fragment-based lead discovery. Nat Rev Drug Discov, 2004. 3(8): p. 660–72.

    Article  PubMed  CAS  Google Scholar 

  41. Clarke, T., Drug companies snub antibiotics as pipeline threatens to run dry. Nature, 2003. 425(6955): p. 225.

    Google Scholar 

  42. Madigan, M.T., J.M. Matinko, and J. Parker, Brock Miikrobiologie. Vol. 1. Auflage. 2001, Heidelberg, Berlin: Spektrum Akademischer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Fischer, M., Bacher, A. (2014). Wege zu neuen Medikamenten gegen Infektionskrankheiten. In: Fischer, M. (eds) Neue und alte Infektionskrankheiten. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-04124-3_1

Download citation

Publish with us

Policies and ethics