Skip to main content

Vascular Endothelial Function

  • Living reference work entry
  • First Online:
PanVascular Medicine

Abstract

Our understanding of the endothelium as an important moderator of vascular function has evolved significantly over the last several decades. Initially viewed as an inert interface between circulating blood and the vessel wall, we now acknowledge its complex and central role in the regulation of vascular tone, inflammation, homeostasis, permeability, and proliferation. Healthy endothelium is vital for maintenance of normal vascular function, balancing vasodilatory and vasoconstrictive influences, maintaining an antithrombotic microenvironment, and mediating the flow of nutrient substances, blood cells, and diverse biologically active molecules across the monolayer. However, failure to adapt to physiological or pathological stimuli may activate aberrant compensatory mechanisms that alter the endothelial phenotype and promote endothelial dysfunction, a pro-thrombotic, pro-proliferative, proinflammatory, and pro-constrictive phenotype. In the presence of traditional or novel risk factors of atherosclerosis, endothelial function degenerates prior to the appearance of morphological vascular changes. This endothelial dysfunction is readily measured through both invasive and noninvasive means and is predictive of future risk of adverse cardiac events. Coupled with efforts to investigate the hemodynamic, biochemical, and molecular processes underlying long-term changes in endothelial properties, therapeutic strategies to alleviate endothelial dysfunction provide a promising pathway to guide future therapeutic interventions and reduce cardiovascular morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Endothelium:

The endothelium is the thin monolayer of cells that lines the inner surface of the blood vessels forming an interface between circulating blood in the lumen and the rest of the vessel wall. The cells that form the endothelium are called endothelial cells.

Endothelial Dysfunction:

Endothelial dysfunction is an alteration of the endovascular lining of the blood vessels in response to various stimuli that is characterized by a pro-thrombotic, proinflammatory, pro-constrictive, and pro-proliferative phenotype.

Flow-Mediated Dilation:

Endothelial function is often quantified by flow-mediated dilation (FMD), which represents the endothelium-dependent relaxation of a conduit artery – typically the brachial artery – due to an increased blood flow. Brachial artery reactivity is frequently used in noninvasive ultrasonographic assessment of FMD that indicates endothelium-dependent response to shear stress.

References

  • Abeywardena MY et al (2002) Age- and hypertension-induced changes in abnormal contractions in rat aorta. J Cardiovasc Pharmacol 40:930–937

    CAS  PubMed  Google Scholar 

  • Adam E et al (1987) High levels of cytomegalovirus antibody in patients requiring vascular surgery for atherosclerosis. Lancet 2:291–293

    CAS  PubMed  Google Scholar 

  • Addabbo F et al (2009) Mitochondria and reactive oxygen species. Hypertension 53:885–892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmadi N et al (2008) Relations between digital thermal monitoring of vascular function, the Framingham risk score, and coronary artery calcium score. J Cardiovasc Comput Tomogr 2:382–388

    PubMed  Google Scholar 

  • Ahmadi N et al (2009) Low fingertip temperature rebound measured by digital thermal monitoring strongly correlates with the presence and extent of coronary artery disease diagnosed by 64-slice multi-detector computed tomography. Int J Cardiovasc Imaging 25:725–738

    PubMed Central  PubMed  Google Scholar 

  • Ahmadi N et al (2011) Reproducibility and variability of digital thermal monitoring of vascular reactivity. Clin Physiol Funct Imaging 31:422–428

    PubMed  Google Scholar 

  • Aird W (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    CAS  PubMed  Google Scholar 

  • Ajani UA et al (2004) Body mass index and mortality among US male physicians. Ann Epidemiol 14:731–739

    PubMed  Google Scholar 

  • Al Suwaidi J et al (2001) Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J Am Coll Cardiol 37:1523–1528

    CAS  PubMed  Google Scholar 

  • Alexanderson E et al (2010) Endothelial dysfunction in systemic lupus erythematosus: evaluation with 13N-ammonia PET. J Nucl Med 51:1927–1931

    CAS  PubMed  Google Scholar 

  • Ames PR et al (2009) Antiphospholipid antibodies and atherosclerosis: insights from systemic lupus erythematosus and primary antiphospholipid syndrome. Clin Rev Allergy Immunol 37:29–35

    CAS  PubMed  Google Scholar 

  • Anderson T, Charbonneau F (2007) Dyslipidemia and Endothelial Dysfunction: Pathophysiology and Therapy. In: Caterina RD, Libby P (eds) Endothelial dysfunctions and vascular disease. Blackwell, Malden 245–257

    Google Scholar 

  • Anderson TJ et al (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26:1235–1241

    CAS  PubMed  Google Scholar 

  • Anderson TJ et al (2011) Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study. Circulation 123:163–169

    PubMed  Google Scholar 

  • Apovian CM et al (2008) Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler, Thromb Vasc Biol 28:1654–1659

    CAS  Google Scholar 

  • Arnal JF et al (1999) Endothelium-derived nitric oxide and vascular physiology and pathology. Cell Mol Life Sci 55:1078–1087

    CAS  PubMed  Google Scholar 

  • Arnold WP et al (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 74:3203–3207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asahara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    CAS  PubMed  Google Scholar 

  • Augustin HG et al (1994) Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays 16:901–906

    CAS  PubMed  Google Scholar 

  • Babar GS et al (2011) Impaired endothelial function in preadolescent children with type 1 diabetes. Diabetes Care 34:681–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bae SW et al (2003) Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway. Biochem Biophys Res Commun 306:981–987

    CAS  PubMed  Google Scholar 

  • Balletshofer BM et al (2000) Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation 101:1780–1784

    CAS  PubMed  Google Scholar 

  • Barton M (2011) The discovery of endothelium-dependent contraction: the legacy of Paul M. Vanhoutte. Pharmacol Res 63:455–462

    CAS  PubMed  Google Scholar 

  • Becher MU et al (2010) Regeneration of the vascular compartment. Herz 35:342–351

    CAS  PubMed  Google Scholar 

  • Beckman JS et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Behrendt D, Ganz P (2002) Endothelial function. From vascular biology to clinical applications. Am J Cardiol 90:40L–48L

    CAS  PubMed  Google Scholar 

  • Beltowski J (2012) Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin Exp Pharmacol Physiol 39:168–178

    CAS  PubMed  Google Scholar 

  • Benjamin EJ et al (2004) Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. [Erratum appears in Circulation, 2004 Jun 29;109(25):3256]. Circulation 109:613–619

    PubMed  Google Scholar 

  • Boger RH et al (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98:1842–1847

    CAS  PubMed  Google Scholar 

  • Bonetti PO et al (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler, Thromb Vasc Biol 23:168–175

    CAS  Google Scholar 

  • Bonetti PO et al (2004) Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol 44:2137–2141

    PubMed  Google Scholar 

  • Boo YC et al (2002) Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am J Physiol – Heart Circ Physiol 283:H1819–H1828

    CAS  PubMed  Google Scholar 

  • Bradley JR et al (1994) The vascular endothelium in septic shock. J Infec 28:1–10

    CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  • Brunner H et al (2005) Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 23:233–246

    CAS  PubMed  Google Scholar 

  • Caballero AE et al (2003) The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metab: Clin Exp 52:173–180

    CAS  Google Scholar 

  • Callera GE et al (2006) Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms. Clin Sci 110:243–253

    CAS  PubMed  Google Scholar 

  • Calver A et al (1992) Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Inves 90:2548–2554

    CAS  Google Scholar 

  • Campbell WB, Fleming I (2010) Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Archiv – Eur J Physiol 459:881–895

    CAS  Google Scholar 

  • Caterina RD, Libby P (2007) Endothelial dysfunctions in vascular disease-II. Blackwell Futura, Malden

    Google Scholar 

  • Celermajer DS et al (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–1115

    CAS  PubMed  Google Scholar 

  • Celermajer DS et al (1993) Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 88:2149–2155

    CAS  PubMed  Google Scholar 

  • Celermajer DS et al (1994) Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 24:471–476

    CAS  PubMed  Google Scholar 

  • Celermajer DS et al (1996) Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med 334:150–154

    CAS  PubMed  Google Scholar 

  • Ceriello A et al (2012) Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes 61:2993–2997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chatterjee Adhikari M et al (2012) Subclinical atherosclerosis and endothelial dysfunction in patients with early rheumatoid arthritis as evidenced by measurement of carotid intima-media thickness and flow-mediated vasodilatation: an observational study. Semin Arthritis Rheum 41:669–675

    CAS  PubMed  Google Scholar 

  • Chen K, Keaney JF Jr (2012) Evolving concepts of oxidative stress and reactive oxygen species in cardiovascular disease. Curr Atheroscler Rep 14:476–483

    CAS  PubMed  Google Scholar 

  • Chung WB et al (2009) The brachial artery remodels to maintain local shear stress despite the presence of cardiovascular risk factors. Arterioscler, Thromb Vasc Biol 29:606–612

    CAS  Google Scholar 

  • Cines DB et al (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561

    CAS  PubMed  Google Scholar 

  • Clarkson P et al (1996) Impaired vascular reactivity in insulin-dependent diabetes mellitus is related to disease duration and low density lipoprotein cholesterol levels. J Am Coll Cardiol 28:573–579

    CAS  PubMed  Google Scholar 

  • Cook PJ, Honeybourne D (1994) Chlamydia pneumoniae. J Antimicrob Chemother 34:859–873

    CAS  PubMed  Google Scholar 

  • Cosentino F, Katusic ZS (1995) Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation 91:139–144

    CAS  PubMed  Google Scholar 

  • Cosentino F et al (1997) High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells. Circulation 96:25–28

    CAS  PubMed  Google Scholar 

  • Damani S et al (2012) Characterization of circulating endothelial cells in acute myocardial infarction. Sci Transl Med 4:126–133

    Google Scholar 

  • Demiot C et al (2007) WISE 2005: chronic bed rest impairs microcirculatory endothelium in women. Am J Physiol – Heart Circ Physiol 293:H3159–H3164

    CAS  PubMed  Google Scholar 

  • Dharmashankar K, Widlansky ME (2010) Vascular endothelial function and hypertension: insights and directions. Curr Hypertens Rep 12:448–455

    PubMed Central  PubMed  Google Scholar 

  • Ding L, Zhang J (2012) Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Zhongguo Yao Li Xue Bao/Acta Pharm Sin 33:75–81

    CAS  Google Scholar 

  • Dohi Y et al (1992) Endothelin stimulated by angiotensin II augments contractility of spontaneously hypertensive rat resistance arteries. Hypertension 19:131–137

    CAS  PubMed  Google Scholar 

  • Donato AJ et al (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666

    CAS  PubMed  Google Scholar 

  • Doughan AK et al (2008) Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res 102:488–496

    CAS  PubMed  Google Scholar 

  • Doyle M et al (2003) The impact of myocardial flow reserve on the detection of coronary artery disease by perfusion imaging methods: an NHLBI WISE study. J Cardiovasc Magn Reson 5:475–485

    PubMed  Google Scholar 

  • Dresner A et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Investig 103:253–259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudzinski DM et al (2006) The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46:235–276

    CAS  PubMed  Google Scholar 

  • Egan KM et al (2004) COX-2-derived prostacyclin confers atheroprotection on female mice. Science 306:1954–1957

    CAS  PubMed  Google Scholar 

  • Egashira K et al (1996) Role of endothelium-derived nitric oxide in coronary vasodilatation induced by pacing tachycardia in humans. Circ Res 79:331–335

    CAS  PubMed  Google Scholar 

  • Fabricant CG et al (1978) Virus-induced atherosclerosis. J Exp Med 148:335–340

    Google Scholar 

  • Feinberg MW, Jain MK (2005) Role of transforming growth factor-beta1/Smads in regulating vascular inflammation and atherogenesis. Panminerva Med 47:169–186

    CAS  PubMed  Google Scholar 

  • Feron O et al (1999) Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Investig 103:897–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari AU et al (2003) Invited review: aging and the cardiovascular system. J Appl Physiol 95:2591–2597

    PubMed  Google Scholar 

  • Flammer AJ et al (2012) The assessment of endothelial function: from research into clinical practice. Circulation 126:753–767

    PubMed Central  PubMed  Google Scholar 

  • Folsom AR et al (1998) Helicobacter pylori seropositivity and coronary heart disease incidence. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation 98:845–850

    CAS  PubMed  Google Scholar 

  • Fukai T (2009) Extracellular SOD and aged blood vessels. Am J Physiol – Heart Circ Physiol 297:H10–H12

    CAS  PubMed  Google Scholar 

  • Fukuda Y et al (2002) Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia. Heart 87:264–269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  PubMed  Google Scholar 

  • Galle J et al (1995) Impairment of endothelium-dependent dilation in rabbit renal arteries by oxidized lipoprotein(a). Role of oxygen-derived radicals. Circulation 92:1582–1589

    CAS  PubMed  Google Scholar 

  • Garrido AM, Griendling KK (2009) NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol 302:148–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghiadoni L et al (2001) Effect of acute blood pressure reduction on endothelial function in the brachial artery of patients with essential hypertension. J Hypertens 19:547–551

    CAS  PubMed  Google Scholar 

  • Gimbrone MA Jr et al (1974) Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol 60:673–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gogitidze Joy N et al (2010) Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. [Erratum appears in Diabetes Care, 2010 Sep;33(9):2129]. Diabetes Care 33:1529–1535

    PubMed Central  PubMed  Google Scholar 

  • Gokce N et al (2005) Effect of medical and surgical weight loss on endothelial vasomotor function in obese patients. Am J Cardiol 95:266–268

    PubMed  Google Scholar 

  • Golbidi S, Laher I (2013) Exercise and the aging endothelium. J Diabetes Res 2013:789607

    PubMed Central  PubMed  Google Scholar 

  • Gordon JL et al (2008) Health behaviors and endothelial function. J Behav Med 31:5–21

    PubMed  Google Scholar 

  • Gori T et al (2008) Conduit artery constriction mediated by low flow a novel noninvasive method for the assessment of vascular function. J Am Coll Cardiol 51:1953–1958

    PubMed  Google Scholar 

  • Gori T et al (2012) Endothelial function assessment: flow-mediated dilation and constriction provide different and complementary information on the presence of coronary artery disease. Eur Heart J 33:363–371

    PubMed  Google Scholar 

  • Greenstein AS et al (2009) Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 119:1661–1670

    CAS  PubMed  Google Scholar 

  • Griendling KK et al (2000a) Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler, Thromb Vasc Biol 20:2175–2183

    CAS  Google Scholar 

  • Griendling KK et al (2000b) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  • Gu P, Xu A (2013) Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction. Rev Endocr Metab Disord 14:49–58

    CAS  PubMed  Google Scholar 

  • Gul KM et al (2009) Digital thermal monitoring of vascular function: a novel tool to improve cardiovascular risk assessment. Vasc Med 14:143–148

    PubMed Central  PubMed  Google Scholar 

  • Guthikonda S et al (2003) Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers. Circulation 107:416–421

    CAS  PubMed  Google Scholar 

  • Gvozdjakova A et al (1992) Effect of smoking on the oxidative processes of cardiomyocytes. Cardiology 81:81–84

    CAS  PubMed  Google Scholar 

  • Halcox JP et al (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106:653–658

    PubMed  Google Scholar 

  • Hamburg NM et al (2008) Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation 117:2467–2474

    PubMed Central  PubMed  Google Scholar 

  • Hamburg NM et al (2011) Relation of brachial and digital measures of vascular function in the community: the Framingham heart study. Hypertension 57:390–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison DG, Gongora MC (2009) Oxidative stress and hypertension. Med Clin N Am 93:621–635

    CAS  PubMed  Google Scholar 

  • Hashimoto M et al (1998) The impairment of flow-mediated vasodilatation in obese men with visceral fat accumulation. Int J Obes Relat Metab Disord 22:477–484

    CAS  PubMed  Google Scholar 

  • Hazel AL, Pedley TJ (2000) Vascular endothelial cells minimize the total force on their nuclei. Biophys J 78:47–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heistad DD et al (1984) Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res 54:711–718

    CAS  PubMed  Google Scholar 

  • Heitzer T et al (1996a) Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94:6–9

    CAS  PubMed  Google Scholar 

  • Heitzer T et al (1996b) Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Role of oxidized LDL. Circulation 93:1346–1353

    CAS  PubMed  Google Scholar 

  • Heitzer T et al (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res 86:E36–E41

    CAS  PubMed  Google Scholar 

  • Herrera MD et al (2010) Endothelial dysfunction and aging: an update. Ageing Res Rev 9:142–152

    CAS  PubMed  Google Scholar 

  • Hess OM et al (1990) Potential role of coronary vasoconstriction in ischaemic heart disease: effect of exercise. Eur Heart J 11(Suppl B):58–64

    PubMed  Google Scholar 

  • Higashi Y et al (2000) A comparison of angiotensin-converting enzyme inhibitors, calcium antagonists, beta-blockers and diuretic agents on reactive hyperemia in patients with essential hypertension: a multicenter study. J Am Coll Cardiol 35:284–291

    CAS  PubMed  Google Scholar 

  • Hill JM et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. [Reprint in Can J Cardiol. 2004 Aug;20 Suppl B:44B-48B; PMID: 15309205]. N Engl J Med 348:593–600

    PubMed  Google Scholar 

  • Hink U et al (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:E14–E22

    CAS  PubMed  Google Scholar 

  • Hirsch L et al (2011) The impact of early compared to late morning hours on brachial endothelial function and long-term cardiovascular events in healthy subjects with no apparent coronary heart disease. Int J Cardiol 151:342–347

    PubMed  Google Scholar 

  • His W (1865) Die Häute und Höhlen des Körpers: Academisches Programm. In: Schwighauser (ed) Basel

    Google Scholar 

  • Hoch NE et al (2009) Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol – Regul Integr Comp Physiol 296:R208–R216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoenig MR et al (2008) Decreased vascular repair and neovascularization with ageing: mechanisms and clinical relevance with an emphasis on hypoxia-inducible factor-1. Curr Mol Med 8:754–767

    CAS  PubMed  Google Scholar 

  • Holmvang G et al (1999) Relation between coronary “steal” and contractile function at rest in collateral-dependent myocardium of humans with ischemic heart disease. Circulation 99:2510–2516

    CAS  PubMed  Google Scholar 

  • Hoshino S et al (2005) Cigarette smoke extract induces endothelial cell injury via JNK pathway. Biochem Biophys Res Commun 329:58–63

    CAS  PubMed  Google Scholar 

  • HPS-Group (2002) MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. [Summary for patients in Curr Cardiol Rep. 2002 Nov;4(6):486–7; PMID: 12379169]. Lancet 360:7–22

    Google Scholar 

  • Huang PL (2003) Endothelial nitric oxide synthase and endothelial dysfunction. Curr Hypertens Rep 5:473–480

    PubMed  Google Scholar 

  • Huang PL et al (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    CAS  PubMed  Google Scholar 

  • Huang AL et al (2007) Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler, Thromb Vasc Biol 27:2113–2119

    CAS  Google Scholar 

  • Igic R, Behnia R (2003) Properties and distribution of angiotensin I converting enzyme. Curr Pharm Des 9:697–706

    CAS  PubMed  Google Scholar 

  • Ignarro LJ et al (1987) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61:866–879

    CAS  PubMed  Google Scholar 

  • Inoguchi T et al (1994) Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol 267:E369–E379

    CAS  PubMed  Google Scholar 

  • Inoue N et al (1995) Molecular regulation of the bovine endothelial cell nitric oxide synthase by transforming growth factor-beta 1. Arterioscler, Thromb Vasc Biol 15:1255–1261

    CAS  Google Scholar 

  • Jaffe EA et al (1973) Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Investig 52:2757–2764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jaimes EA et al (2004) Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler, Thromb Vasc Biol 24:1031–1036

    CAS  Google Scholar 

  • Jayaraman S (2012) Epigenetic mechanisms of metabolic memory in diabetes. Circ Res 110:1039–1041

    CAS  PubMed  Google Scholar 

  • Joannides R et al (1995) Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 91:1314–1319

    CAS  PubMed  Google Scholar 

  • Johnstone MT et al (1993) Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 88:2510–2516

    CAS  PubMed  Google Scholar 

  • Juonala M et al (2006) Elevated blood pressure in adolescent boys predicts endothelial dysfunction: the cardiovascular risk in young Finns study. Hypertension 48:424–430

    CAS  PubMed  Google Scholar 

  • Juonala M et al (2008) Childhood levels of serum apolipoproteins B and A-I predict carotid intima-media thickness and brachial endothelial function in adulthood: the cardiovascular risk in young Finns study. J Am Coll Cardiol 52:293–299

    CAS  PubMed  Google Scholar 

  • Jurva JW et al (2006) The effect of exertional hypertension evoked by weight lifting on vascular endothelial function. J Am Coll Cardiol 48:588–589

    PubMed  Google Scholar 

  • Katusic ZS et al (2012) Vascular effects of prostacyclin: does activation of PPAR play a role? Trends Pharmacol Sci 33:559–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keating ST, El-Osta A (2012) Chromatin modifications associated with diabetes. J Cardiovasc Transl Res 5:399–412

    PubMed  Google Scholar 

  • Ketonen J et al (2010) Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J 74:1479–1487

    CAS  PubMed  Google Scholar 

  • Kim HJ et al (2000) The effect of age on cyclooxygenase-2 gene expression: NF-kappaB activation and IkappaBalpha degradation. Free Radic Biol Med 28:683–692

    CAS  PubMed  Google Scholar 

  • Kim JA et al (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113:1888–1904

    PubMed  Google Scholar 

  • Kiowski W et al (1994) Diminished vascular response to inhibition of endothelium-derived nitric oxide and enhanced vasoconstriction to exogenously administered endothelin-1 in clinically healthy smokers. Circulation 90:27–34

    CAS  PubMed  Google Scholar 

  • Kizhakekuttu TJ, Widlansky ME (2010) Natural antioxidants and hypertension: promise and challenges. Cardiovasc Ther 28:e20–e32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kizhakekuttu TJ et al (2012) Adverse alterations in mitochondrial function contribute to type 2 diabetes mellitus-related endothelial dysfunction in humans. Arterioscler, Thromb Vasc Biol 32:2531–2539

    CAS  Google Scholar 

  • Kluge MA et al (2013) Mitochondria and endothelial function. Circ Res 112:1171–1188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kol A, Libby P (2007) Infections and vascular disease. In: Caterina RD, Libby P (eds) Endothelial dysfunctions and vascular disease. Blackwell, Malden

    Google Scholar 

  • Kuhn FE et al (1991) Effects of high-density lipoprotein on acetylcholine-induced coronary vasoreactivity. Am J Cardiol 68:1425–1430

    CAS  PubMed  Google Scholar 

  • Kuo CC et al (1995) Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old). Proc Natl Acad Sci U S A 92:6911–6914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kushner EJ et al (2009) Aging and endothelial progenitor cell telomere length in healthy men. Clin Chem Lab Med 47:47–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuvin JT et al (2003) Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J 146:168–174

    PubMed  Google Scholar 

  • Laufs U et al (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135

    CAS  PubMed  Google Scholar 

  • Lawlor DA, Leon DA (2005) Association of body mass index and obesity measured in early childhood with risk of coronary heart disease and stroke in middle age: findings from the Aberdeen children of the 1950s prospective cohort study. Circulation 111:1891–1896

    PubMed  Google Scholar 

  • Lee M, Vanhoutte PM (2010) Inflammation and endothelial dysfunction with aging. In: Dauphinee SM, Karsan A (eds) Endothelial dysfunction and inflammation. Springer, Basel, pp 189–200

    Google Scholar 

  • Lekakis J et al (1998) Effects of acute cigarette smoking on endothelium-dependent arterial dilatation in normal subjects. Am J Cardiol 81:1225–1228

    CAS  PubMed  Google Scholar 

  • Leopold JA (2013) The endothelium. In: Creager M et al (eds) Vascular medicine: a companion to Braunwald’s heart disease, 2nd edn. Elsevier Saunders, Philadelphia, pp 14–24

    Google Scholar 

  • Levin ER (1996) Endothelins as cardiovascular peptides. Am J Nephrol 16:246–251

    CAS  PubMed  Google Scholar 

  • Li H, Forstermann U (2009) Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des 15:3133–3145

    CAS  PubMed  Google Scholar 

  • Li JM, Shah AM (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol – Regul Integr Comp Physiol 287:R1014–R1030

    CAS  PubMed  Google Scholar 

  • Li H et al (2003) Histamine upregulates gene expression of endothelial nitric oxide synthase in human vascular endothelial cells. Circulation 107:2348–2354

    CAS  PubMed  Google Scholar 

  • Li L et al (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51:169–187

    CAS  PubMed  Google Scholar 

  • Liao JK et al (1995) Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem 270:319–324

    CAS  PubMed  Google Scholar 

  • Lin KY et al (2002) Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase. Circulation 106:987–992

    CAS  PubMed  Google Scholar 

  • Lind L et al (2011) Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation 123:1545–1551

    PubMed  Google Scholar 

  • Lopez-Campistrous A et al (2008) Mitochondrial dysfunction in the hypertensive rat brain: respiratory complexes exhibit assembly defects in hypertension. Hypertension 51:412–419

    CAS  PubMed  Google Scholar 

  • Loyer X et al (2014) Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res 114:434–443

    CAS  PubMed  Google Scholar 

  • Ludmer PL et al (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315:1046–1051

    CAS  PubMed  Google Scholar 

  • Lukacs NW et al (1995) Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1, during monocyte: endothelial cell interactions. Blood 86:2767–2773

    CAS  PubMed  Google Scholar 

  • Lundman P et al (2001) A triglyceride-rich fat emulsion and free fatty acids but not very low density lipoproteins impair endothelium-dependent vasorelaxation. Atherosclerosis 159:35–41

    CAS  PubMed  Google Scholar 

  • Magen E et al (2010) Potential link between C3a, C3b and endothelial progenitor cells in resistant hypertension. Am J Med Sci 339:415–419

    PubMed  Google Scholar 

  • Mancini GB et al (1996) Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. [Erratum appears in Circulation 1996 Sep 15;94(6):1490]. Circulation 94:258–265

    CAS  PubMed  Google Scholar 

  • Marchesi C et al (2009) Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension 54:1384–1392

    CAS  PubMed  Google Scholar 

  • Martin T et al (1997) Cytokine induction of monocyte chemoattractant protein-1 gene expression in human endothelial cells depends on the cooperative action of NF-kappa B and AP-1. Eur J Immunol 27:1091–1097

    CAS  PubMed  Google Scholar 

  • Matheeussen V et al (2011) Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries. Biol Chem 392:189–198

    CAS  PubMed  Google Scholar 

  • Mather KJ et al (2001) Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol 37:1344–1350

    CAS  PubMed  Google Scholar 

  • Matoba T et al (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Investig 106:1521–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsubara J et al (2012) Decreased levels of endogenous plasma active glucagon like peptide-1 were correlated with endothelial dysfunction in patients with coronary risk factors. Circulation 126:A10901

    Google Scholar 

  • Matsuda Y et al (1993) High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Circ Res 72:1103–1109

    CAS  PubMed  Google Scholar 

  • McIntyre TM et al (1997) Molecular mechanisms of early inflammation. Thromb Haemost 78:302–305

    CAS  PubMed  Google Scholar 

  • MICRO-HOPE-substudy (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. [Erratum appears in Lancet 2000 Sep 2;356(9232):860]. Lancet 355:253–259

    Google Scholar 

  • Mitchell GF et al (2004) Local shear stress and brachial artery flow-mediated dilation: the Framingham Heart Study. [Erratum appears in Hypertension. 2005 Feb;45(2):e9]. Hypertension 44:134–139

    CAS  PubMed  Google Scholar 

  • Miyagawa K et al (2007) Increased oxidative stress impairs endothelial modulation of contractions in arteries from spontaneously hypertensive rats. J Hypertens 25:415–421

    CAS  PubMed  Google Scholar 

  • Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    CAS  PubMed  Google Scholar 

  • Moncada S, Vane JR (1984) Prostacyclin and its clinical applications. Ann Clin Res 16:241–252

    CAS  PubMed  Google Scholar 

  • Monnier L et al (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687

    CAS  PubMed  Google Scholar 

  • Montezano AC, Touyz RM (2012) Reactive oxygen species and endothelial function–role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110:87–94

    CAS  PubMed  Google Scholar 

  • Morrish NJ et al (2001) Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia 44(Suppl 2):S14–S21

    PubMed  Google Scholar 

  • Muhlestein JB et al (1996) Increased incidence of Chlamydia species within the coronary arteries of patients with symptomatic atherosclerotic versus other forms of cardiovascular disease. J Am Coll Cardiol 27:1555–1561

    CAS  PubMed  Google Scholar 

  • Mukherjee S et al (2001) Effects of oxidized low density lipoprotein on nitric oxide synthetase and protein kinase C activities in bovine endothelial cells. Cell Mol Biol 47:1051–1058

    CAS  PubMed  Google Scholar 

  • Mullen MJ et al (2000) Atorvastatin but not l-arginine improves endothelial function in type I diabetes mellitus: a double-blind study. J Am Coll Cardiol 36:410–416

    CAS  PubMed  Google Scholar 

  • Murdaca G et al (2012) Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis 224:309–317

    CAS  PubMed  Google Scholar 

  • Muris DM et al (2013) Microvascular dysfunction: an emerging pathway in the pathogenesis of obesity-related insulin resistance. Rev Endocr Metab Disord 14:29–38

    CAS  PubMed  Google Scholar 

  • Nabel EG et al (1988) Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77:43–52

    CAS  PubMed  Google Scholar 

  • Neunteufl T et al (2000) Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am J Cardiol 86:207–210

    CAS  PubMed  Google Scholar 

  • Nishikawa T et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    CAS  PubMed  Google Scholar 

  • Nitenberg A et al (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 42:1017–1025

    CAS  PubMed  Google Scholar 

  • Nohria A et al (2006) Role of nitric oxide in the regulation of digital pulse volume amplitude in humans. J Appl Physiol 101:545–548

    CAS  PubMed  Google Scholar 

  • Nystrom T et al (2004) Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol – Endocrinol Metab 287:E1209–E1215

    PubMed  Google Scholar 

  • Ossei-Gerning N et al (1997) Helicobacter pylori infection is related to atheroma in patients undergoing coronary angiography. Cardiovasc Res 35:120–124

    CAS  PubMed  Google Scholar 

  • Palmer RM et al (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    CAS  PubMed  Google Scholar 

  • Panza JA et al (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27

    CAS  PubMed  Google Scholar 

  • Parker BA et al (2011) Heterogeneous vasodilator pathways underlie flow-mediated dilation in men and women. Am J Physiol – Heart Circ Physiol 301:H1118–H1126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parkington HC et al (2004) Prostacyclin and endothelium-dependent hyperpolarization. Pharmacol Res 49:509–514

    CAS  PubMed  Google Scholar 

  • Pate M, Darmala V (2010) Endothelial cell biology: role in inflammatory response. Adv Clin Chem 52:109–130

    CAS  PubMed  Google Scholar 

  • Patti G et al (2005) Impaired flow-mediated dilation and risk of restenosis in patients undergoing coronary stent implantation. Circulation 111:70–75

    PubMed  Google Scholar 

  • Petrie JR et al (1998) How reproducible is bilateral forearm plethysmography? Br J Clin Pharmacol 45:131–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce GL et al (2009) Nuclear factor-{kappa}B activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation 119:1284–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad A et al (1999) Abnormal flow-mediated epicardial vasomotion in human coronary arteries is improved by angiotensin-converting enzyme inhibition: a potential role of bradykinin. J Am Coll Cardiol 33:796–804

    CAS  PubMed  Google Scholar 

  • Prasad A et al (2000) Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in atherosclerosis. Circulation 101:2349–2354

    CAS  PubMed  Google Scholar 

  • Prasad A et al (2002) Predisposition to atherosclerosis by infections: role of endothelial dysfunction. Circulation 106:184–190

    PubMed  Google Scholar 

  • Puranik R, Celermajer DS (2003) Smoking and endothelial function. Prog Cardiovasc Dis 45:443–458

    CAS  PubMed  Google Scholar 

  • Pyorala K et al (1997) Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. A subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). [Erratum appears in Diabetes Care 1997 Jun;20(6):1048]. Diabetes Care 20:614–620

    CAS  PubMed  Google Scholar 

  • Quyyumi AA, Patel RS (2010) Endothelial dysfunction and hypertension: cause or effect? Hypertension 55:1092–1094

    CAS  PubMed  Google Scholar 

  • Raitakari OT et al (1999a) Effect of Lp(a) on the early functional and structural changes of atherosclerosis. Arterioscler, Thromb Vasc Biol 19:990–995

    CAS  Google Scholar 

  • Raitakari OT et al (1999b) Arterial endothelial dysfunction related to passive smoking is potentially reversible in healthy young adults. Ann Intern Med 130:578–581

    CAS  PubMed  Google Scholar 

  • Raitakari M et al (2004) Weight reduction with very-low-caloric diet and endothelial function in overweight adults: role of plasma glucose. Arterioscler, Thromb Vasc Biol 24:124–128

    CAS  Google Scholar 

  • Read MA et al (1994) NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation. J Exp Med 179:503–512

    CAS  PubMed  Google Scholar 

  • Reriani MK et al (2010) Endothelial function as a functional expression of cardiovascular risk factors. Biomark Med 4:351–360

    PubMed Central  PubMed  Google Scholar 

  • Richardson MR, Yoder MC (2011) Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 50:266–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ridker PM et al (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352:20–28

    CAS  PubMed  Google Scholar 

  • Ridker PM et al (2009) Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 373:1175–1182

    CAS  PubMed  Google Scholar 

  • Rossi R et al (2004) Flow-mediated vasodilation and the risk of developing hypertension in healthy postmenopausal women. J Am Coll Cardiol 44:1636–1640

    PubMed  Google Scholar 

  • Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250:H822–H827

    CAS  PubMed  Google Scholar 

  • Rubinshtein R et al (2010) Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J 31:1142–1148

    PubMed  Google Scholar 

  • Saikku P (1993) Chlamydia pneumoniae infection as a risk factor in acute myocardial infarction. Eur Heart J 14(Suppl K):62–65

    PubMed  Google Scholar 

  • Sander M et al (1999) A large blood pressure-raising effect of nitric oxide synthase inhibition in humans. Hypertension 33:937–942

    CAS  PubMed  Google Scholar 

  • Sasaki S et al (2002) A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension. Am J Hypertens 15:302–309

    CAS  PubMed  Google Scholar 

  • Schachinger V et al (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    CAS  PubMed  Google Scholar 

  • Schiffrin EL, Touyz RM (1998) Vascular biology of endothelin. J Cardiovasc Pharmacol 32(Suppl 3):S2–S13

    CAS  PubMed  Google Scholar 

  • Schnabel RB et al (2011) Noninvasive vascular function measurement in the community: cross-sectional relations and comparison of methods. Circ Cardiovasc Imaging 4:371–380

    PubMed  Google Scholar 

  • Schwann T (1847) Microscopal researches into the accordance in the structure and growth of animals and plants. Sydenham Society, London

    Google Scholar 

  • Schwartz BG et al (2010) The endothelial cell in health and disease: its function, dysfunction, measurement and therapy. Int J Impot Res 22:77–90

    CAS  PubMed  Google Scholar 

  • Seals DR et al (2008) Habitual exercise and arterial aging. J Appl Physiol 105:1323–1332

    PubMed Central  PubMed  Google Scholar 

  • Sedentary Behaviour Research N (2012) Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol, Nutr Metab 37:540–542

    Google Scholar 

  • Shechter M et al (2009a) Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol 134:52–58

    PubMed  Google Scholar 

  • Shechter M et al (2009b) Vascular endothelial function predicts mortality risk in patients with advanced ischaemic chronic heart failure. Eur J Heart Fail 11:588–593

    PubMed  Google Scholar 

  • Shechter M et al (2014) Usefulness of brachial artery flow-mediated dilation to predict long-term cardiovascular events in subjects without heart disease. Am J Cardiol 113:162–167

    PubMed  Google Scholar 

  • Shishehbor MH et al (2003) Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 289:1675–1680

    CAS  PubMed  Google Scholar 

  • Shoelson SE et al (2006) Inflammation and insulin resistance. J Clin Investig 116:1793–1801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soltesz P et al (2011) Comparative assessment of vascular function in autoimmune rheumatic diseases: considerations of prevention and treatment. Autoimmun Rev 10:416–425

    CAS  PubMed  Google Scholar 

  • Sorensen KE et al (1994) Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Investig 93:50–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spieker LE et al (2003) ETA receptors mediate vasoconstriction of large conduit arteries during reduced flow in humans. J Cardiovasc Pharmacol 42:315–318

    CAS  PubMed  Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    CAS  PubMed  Google Scholar 

  • Stamler JS et al (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Google Scholar 

  • Steinberg D (1997) Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation 95:1062–1071

    CAS  PubMed  Google Scholar 

  • Steinberg HO et al (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Investig 97:2601–2610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinberg HO et al (1997) Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Investig 100:1230–1239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinberg HO et al (2000) Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 49:1231–1238

    CAS  PubMed  Google Scholar 

  • Stewart KG et al (2000) Aging increases PGHS-2-dependent vasoconstriction in rat mesenteric arteries. Hypertension 35:1242–1247

    CAS  PubMed  Google Scholar 

  • Stroes E et al (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Investig 99:41–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suboc T et al (2013) Moderate obesity and endothelial dysfunction in humans: influence of gender and systemic inflammation. Physiol Rep 1:e00058

    PubMed Central  Google Scholar 

  • Sun D et al (2004) Reduced release of nitric oxide to shear stress in mesenteric arteries of aged rats. Am J Physiol – Heart Circ Physiol 286:H2249–H2256

    CAS  PubMed  Google Scholar 

  • Suwaidi JA et al (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101:948–954

    CAS  PubMed  Google Scholar 

  • Tabet F et al (2014) HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun 5:3292

    PubMed  Google Scholar 

  • Tabit CE et al (2010) Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 11:61–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taddei S et al (2001) Age-related reduction of NO availability and oxidative stress in humans. Hypertension 38:274–279

    CAS  PubMed  Google Scholar 

  • Takahashi M et al (1990) Lipoproteins are inhibitors of endothelium-dependent relaxation of rabbit aorta. Am J Physiol 258:H1–H8

    CAS  PubMed  Google Scholar 

  • Takase B et al (1998) Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am J Cardiol 82(1535–1539):A1537–A1538

    Google Scholar 

  • Tanaka H et al (2000) Aging, habitual exercise, and dynamic arterial compliance. Circulation 102:1270–1275

    CAS  PubMed  Google Scholar 

  • Thijssen DH et al (2010) Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol 108:845–875

    PubMed Central  PubMed  Google Scholar 

  • Thijssen DH et al (2011) Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol – Heart Circ Physiol 300:H2–H12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thijssen DH et al (2012) Impact of exercise training on arterial wall thickness in humans. Clin Sci 122:311–322

    PubMed Central  PubMed  Google Scholar 

  • Thom DH et al (1991) Chlamydia pneumoniae strain TWAR antibody and angiographically demonstrated coronary artery disease. Arterioscler Thromb 11:547–551

    CAS  PubMed  Google Scholar 

  • Tokunaga O et al (1989) Atherosclerosis- and age-related multinucleated variant endothelial cells in primary culture from human aorta. Am J Pathol 135:967–976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torsney E, Xu Q (2011) Resident vascular progenitor cells. J Mol Cell Cardiol 50:304–311

    CAS  PubMed  Google Scholar 

  • Tounian P et al (2001) Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet 358:1400–1404

    CAS  PubMed  Google Scholar 

  • Treasure CB et al (1992) Epicardial coronary artery responses to acetylcholine are impaired in hypertensive patients. Circ Res 71:776–781

    CAS  PubMed  Google Scholar 

  • Triggle CR, Ding H (2002) Endothelium-derived hyperpolarizing factor: is there a novel chemical mediator? Clin Exp Pharmacol Physiol 29:153–160

    CAS  PubMed  Google Scholar 

  • Tzemos N et al (2001) Nebivolol reverses endothelial dysfunction in essential hypertension: a randomized, double-blind, crossover study. Circulation 104:511–514

    CAS  PubMed  Google Scholar 

  • UKPDS-Group (1998a) Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group. BMJ 317:713–720

    Google Scholar 

  • UKPDS-Group (1998b) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. [Erratum appears in Lancet 1999 Aug 14;354(9178):602]. Lancet 352:837–853

    Google Scholar 

  • Utz W et al (2005) Blood oxygen level-dependent MRI of tissue oxygenation: relation to endothelium-dependent and endothelium-independent blood flow changes. Arterioscler, Thromb Vasc Biol 25:1408–1413

    CAS  Google Scholar 

  • Vallance P, Chan N (2001) Endothelial function and nitric oxide: clinical relevance. Heart 85:342–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • van der Toorn M et al (2009) Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am J Physiol – Lung Cell Mol Physiol 297:L109–L114

    PubMed Central  PubMed  Google Scholar 

  • van Etten RW et al (2002) Intensive lipid lowering by statin therapy does not improve vasoreactivity in patients with type 2 diabetes. Arterioscler, Thromb Vasc Biol 22:799–804

    Google Scholar 

  • Vayssier-Taussat M et al (2001) Effects of tobacco smoke and benzo[a]pyrene on human endothelial cell and monocyte stress responses. Am J Physiol – Heart Circ Physiol 280:H1293–H1300

    CAS  PubMed  Google Scholar 

  • Vita JA (2011) Endothelial function. Circulation 124:e906–e912

    PubMed  Google Scholar 

  • Vita JA, Keaney JF Jr (2002) Endothelial function: a barometer for cardiovascular risk? Circulation 106:640–642

    PubMed  Google Scholar 

  • Vita JA et al (1990) Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81:491–497

    CAS  PubMed  Google Scholar 

  • Wang R (2009) Hydrogen sulfide: a new EDRF. Kidney Int 76:700–704

    CAS  PubMed  Google Scholar 

  • Wang J, Widlansky M (2012) Cytoskeleton, cytoskeletal interactions, and vascular endothelial function. Cell Health Cytoskelet 4:1–9

    Google Scholar 

  • Wang J et al (2012) Acute exposure to low glucose rapidly induces endothelial dysfunction and mitochondrial oxidative stress: role for AMP kinase. Arterioscler, Thromb Vasc Biol 32:712–720

    CAS  Google Scholar 

  • Watts SW (2010) Endothelin receptors: what’s new and what do we need to know? Am J Physiol – Regul Integr Comp Physiol 298:R254–R260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenzel P et al (2008) Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis 198:65–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widder JD et al (2009) Attenuation of angiotensin II-induced vascular dysfunction and hypertension by overexpression of Thioredoxin 2. Hypertension 54:338–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widlansky ME (2010) The danger of sedenterism: endothelium at risk. Am J Physiol – Heart Circ Physiol 299:H243–H244

    CAS  PubMed  Google Scholar 

  • Widlansky ME, Gutterman DD (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 15:1517–1530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widlansky ME et al (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160

    CAS  PubMed  Google Scholar 

  • Williams SB et al (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701

    CAS  PubMed  Google Scholar 

  • Wright RJ et al (2010) Effects of acute insulin-induced hypoglycemia on indices of inflammation: putative mechanism for aggravating vascular disease in diabetes. Diabetes Care 33:1591–1597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia P et al (1994) Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 43:1122–1129

    CAS  PubMed  Google Scholar 

  • Yanagisawa M et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    CAS  PubMed  Google Scholar 

  • Yeboah J et al (2007) Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study. Circulation 115:2390–2397

    PubMed  Google Scholar 

  • Yeboah J et al (2009) Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation 120:502–509

    PubMed Central  PubMed  Google Scholar 

  • Yildiz O (2007) Vascular smooth muscle and endothelial functions in aging. Ann N Y Acad Sci 1100:353–360

    CAS  PubMed  Google Scholar 

  • Yoon HJ et al (2010) Alterations in the activity and expression of endothelial NO synthase in aged human endothelial cells. Mech Ageing Dev 131:119–123

    CAS  PubMed  Google Scholar 

  • Yoshizumi M et al (1993) Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 73:205–209

    CAS  PubMed  Google Scholar 

  • Zeiher AM et al (1989) Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 14:1181–1190

    CAS  PubMed  Google Scholar 

  • Zeiher AM et al (1991) Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83:391–401

    CAS  PubMed  Google Scholar 

  • Zeng ZH et al (2009) The functional changes of the perivascular adipose tissue in spontaneously hypertensive rats and the effects of atorvastatin therapy. Clin Exp Hypertens (NY) 31:355–363

    CAS  Google Scholar 

  • Zhou Q, Liao JK (2010) Pleiotropic effects of statins – basic research and clinical perspectives. Circ J 74:818–826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ziegler T et al (1998) Nitric oxide synthase expression in endothelial cells exposed to mechanical forces. Hypertension 32:351–355

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Widlansky M.D., MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Widlansky, M.E., Malik, M.A. (2014). Vascular Endothelial Function. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37393-0_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37393-0_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37393-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics