Skip to main content

Tissue-Engineered Approach to Tendon and Ligament Reconstruction: Current Trends

  • Living reference work entry
  • First Online:
Sports Injuries

Abstract

Current graft choices for tendon and ligament reconstruction include autograft and allografts, with more than 900,000 allografts used for reconstructions annually in the United States. Given the limitations of autografts and allografts, both synthetic and naturally derived tissue-engineered scaffolds have been developed. Despite its early success, synthetic grafts have been associated with a high incidence of chronic foreign-body inflammation, debris-induced synovitis, mechanical limitations, and graft failure. Therefore, in recent years the focus has shifted to the use of naturally derived scaffolds and an evolving discipline called “functional tissue engineering” which uses a combination of stem cells, biocompatible scaffolds, and mechanical stimulation to produce tissue-engineered constructs suitable to replace or repair load-bearing structures such as tendons and ligaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • AAOS (2011) Bone and soft-tissue allografts processing and safety. AAOS Now May 2011

    Google Scholar 

  • Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V et al (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272

    PubMed  CAS  Google Scholar 

  • Aurora A, McCarron JA, van den Bogert AJ, Gatica JE, Iannotti JP, Derwin KA (2012) The biomechanical role of scaffolds in augmented rotator cuff tendon repairs. J Shoulder Elbow Surg 21:1064–1071

    Article  PubMed  Google Scholar 

  • Barber FA, Burns JP, Deutsch A, Labbe MR, Litchfield RB (2012) A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthrosc 28:8–15

    Article  Google Scholar 

  • Barrett GR, Line LL Jr, Shelton WR, Manning JO, Phelps R (1993) The Dacron ligament prosthesis in anterior cruciate ligament reconstruction. A four-year review. Am J Sports Med 21:367–373

    Article  PubMed  CAS  Google Scholar 

  • Bigliani LU, Cordasco FA, McIlveen SJ, Musso ES (1992) Operative treatment of failed repairs of the rotator cuff. J Bone Joint Surg Am 74:1505–1515

    PubMed  CAS  Google Scholar 

  • Bolton CW, Bruchman WC (1985) The GORE-TEX expanded polytetrafluoroethylene prosthetic ligament. An in vitro and in vivo evaluation. Clin Orthop Relat Res 196:202–213

    Google Scholar 

  • Buckwalter JA, Grodzinsky AJ (1999) Loading of healing bone, fibrous tissue, and muscle: implications for orthopaedic practice. J Am Acad Orthop Surg 7:291–299

    PubMed  CAS  Google Scholar 

  • Butler DL, Awad HA (1999) Perspectives on cell and collagen composites for tendon repair. Clin Orthop Relat Res (367 Suppl):S324–S332

    Google Scholar 

  • Butler DL, Goldstein SA, Guilak F (2000) Functional tissue engineering: the role of biomechanics. J Biomech Eng 122:570–575

    Article  PubMed  CAS  Google Scholar 

  • Butler DL, Juncosa-Melvin N, Boivin GP, Galloway MT, Shearn JT, Gooch C et al (2008) Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. J Orthop Res 26:1–9

    Article  PubMed  Google Scholar 

  • Chang SK, Egami DK, Shaieb MD, Kan DM, Richardson AB (2003) Anterior cruciate ligament reconstruction: allograft versus autograft. Arthroscopy 19:453–462

    Article  PubMed  Google Scholar 

  • Cole BJ, McCarty LP 3rd, Kang RW, Alford W, Lewis PB, Hayden JK (2007) Arthroscopic rotator cuff repair: prospective functional outcome and repair integrity at minimum 2-year follow-up. J Shoulder Elbow Surg 16:579–585

    Article  PubMed  Google Scholar 

  • Cousineau-Pelletier P, Langelier E (2010) Relative contributions of mechanical degradation, enzymatic degradation, and repair of the extracellular matrix on the response of tendons when subjected to under- and over- mechanical stimulations in vitro. J Orthop Res 28:204–210

    PubMed  Google Scholar 

  • Dines JS, Grande DA, Dines DM (2007) Tissue engineering and rotator cuff tendon healing. J Shoulder Elbow Surg 16:S204–S207

    Article  PubMed  Google Scholar 

  • Eriksson E (1976) Sports injuries of the knee ligaments: their diagnosis, treatment, rehabilitation, and prevention. Med Sci Sports 8:133–144

    PubMed  CAS  Google Scholar 

  • Frank CB, Jackson DW (1997) The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 79:1556–1576

    PubMed  CAS  Google Scholar 

  • Galatz LM, Griggs S, Cameron BD, Iannotti JP (2001) Prospective longitudinal analysis of postoperative shoulder function : a ten-year follow-up study of full-thickness rotator cuff tears. J Bone Joint Surg Am 83-A:1052–1056

    PubMed  CAS  Google Scholar 

  • Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K (2004) The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 86-A:219–224

    PubMed  Google Scholar 

  • Galili U (1999) Significance of anti-Gal IgG in chronic xenograft rejection. Transplant Proc 31:940–941

    Article  PubMed  CAS  Google Scholar 

  • Galili U (2005) The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol 83:674–686

    Article  PubMed  CAS  Google Scholar 

  • Garvin J, Qi J, Maloney M, Banes AJ (2003) Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9:967–979

    Article  PubMed  CAS  Google Scholar 

  • Gentleman E, Livesay GA, Dee KC, Nauman EA (2006) Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34:726–736

    Article  PubMed  Google Scholar 

  • Gimbel JA, Van Kleunen JP, Lake SP, Williams GR, Soslowsky LJ (2007) The role of repair tension on tendon to bone healing in an animal model of chronic rotator cuff tears. J Biomech 40:561–568

    Article  PubMed  Google Scholar 

  • Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  PubMed  Google Scholar 

  • Glousman R, Shields C Jr, Kerlan R, Jobe F, Lombardo S, Yocum L et al (1988) Gore-Tex prosthetic ligament in anterior cruciate deficient knees. Am J Sports Med 16:321–326

    Article  PubMed  CAS  Google Scholar 

  • Gottlob CA, Baker CL Jr, Pellissier JM, Colvin L (1999) Cost effectiveness of anterior cruciate ligament reconstruction in young adults. Clin Orthop Relat Res 367:272–282

    Google Scholar 

  • Goutallier D, Postel JM, Gleyze P, Leguilloux P, Van Driessche S (2003) Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg 12:550–554

    Article  PubMed  Google Scholar 

  • Hohlrieder M, Teuschl AH, Cicha K, van Griensven M, Redl H, Stampfl J (2013) Bioreactor and scaffold design for the mechanical stimulation of anterior cruciate ligament grafts. Biomed Mater Eng 23:225–237

    PubMed  CAS  Google Scholar 

  • Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ (2006) Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am 88:1238–1244

    Article  PubMed  Google Scholar 

  • Ide J, Kikukawa K, Hirose J, Iyama K, Sakamoto H, Mizuta H (2009) Reconstruction of large rotator-cuff tears with acellular dermal matrix grafts in rats. J Shoulder Elbow Surg 18:288–295

    Article  PubMed  Google Scholar 

  • Jackson DW, Corsetti J, Simon TM (1996) Biologic incorporation of allograft anterior cruciate ligament replacements. Clin Orthop Relat Res 324:126–133

    Article  PubMed  Google Scholar 

  • Jones DB, Huddleston PM, Zobitz ME, Stuart MJ (2007) Mechanical properties of patellar tendon allografts subjected to chemical sterilization. Arthroscopy 23:400–404

    Article  PubMed  Google Scholar 

  • Joyce MJ, Greenwald AS, Boden S, Brubaker S, Heim CS, American Academy of Orthopaedic Surgeons Committee on Biological Implants Tissue Work Group Committee on Biological Implants Tissue Work Group (2008) Musculoskeletal allograft tissue safety, San Francisco

    Google Scholar 

  • Kennedy JC, Roth JH, Mendenhall HV, Sanford JB (1980) Presidential address. Intraarticular replacement in the anterior cruciate ligament-deficient knee. Am J Sports Med 8:1–8

    Article  PubMed  CAS  Google Scholar 

  • Laurencin CT, Freeman JW (2005) Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26:7530–7536

    Article  PubMed  CAS  Google Scholar 

  • Laurencin CT, Ambrosio AM, Borden MD, Cooper JA Jr (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46

    Article  PubMed  CAS  Google Scholar 

  • Laurencin CT, Khan Y, Kofron M, El-Amin S, Botchwey E, Yu X et al (2006) The ABJS Nicolas Andry award: tissue engineering of bone and ligament: a 15-year perspective. Clin Orthop Relat Res 447:221–236

    Article  PubMed  Google Scholar 

  • Legnani C, Ventura A, Terzaghi C, Borgo E, Albisetti W (2010) Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. Int Orthop 34:465–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Leong NL, Petrigliano FA, McAllister DR (2013) Current tissue engineering strategies in anterior cruciate ligament reconstruction. J Biomed Mater Res A 102(5):1614–1624

    Article  PubMed  Google Scholar 

  • Lin VS, Lee MC, O’Neal S, McKean J, Sung KL (1999) Ligament tissue engineering using synthetic biodegradable fiber scaffolds. Tissue Eng 5:443–452

    Article  PubMed  CAS  Google Scholar 

  • Lukianov AV, Richmond JC, Barrett GR, Gillquist J (1989) A multicenter study on the results of anterior cruciate ligament reconstruction using a Dacron ligament prosthesis in “salvage” cases. Am J Sports Med 17:380–385, discussion 385–386

    Article  PubMed  CAS  Google Scholar 

  • Macnicol MF, Penny ID, Sheppard L (1991) Early results of the Leeds-Keio anterior cruciate ligament replacement. J Bone Joint Surg Br 73:377–380

    PubMed  CAS  Google Scholar 

  • Mannava S, Plate JF, Whitlock PW, Callahan MF, Seyler TM, Koman LA et al (2011) Evaluation of in vivo rotator cuff muscle function after acute and chronic detachment of the supraspinatus tendon: an experimental study in an animal model. J Bone Joint Surg Am 93:1702–1711

    Article  PubMed  Google Scholar 

  • Margevicius KJ, Claes LE, Durselen L, Hanselmann K (1996) Identification and distribution of synthetic ligament wear particles in sheep. J Biomed Mater Res 31:319–328

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas R, MacDonald PB (2008) Anterior cruciate ligament reconstruction: a look at prosthetics–past, present and possible future. Mcgill J Med 11:29–37

    PubMed  PubMed Central  Google Scholar 

  • Min BH, Han MS, Woo JI, Park HJ, Park SR (2003) The origin of cells that repopulate patellar tendons used for reconstructing anterior cruciate ligaments in man. J Bone Joint Surg Br 85:753–757

    PubMed  CAS  Google Scholar 

  • Mody BS, Howard L, Harding ML, Parmar HV, Learmonth DJ (1993) The ABC carbon and polyester prosthetic ligament for ACL-deficient knees. Early results in 31 cases. J Bone Joint Surg Br 75:818–821

    PubMed  CAS  Google Scholar 

  • Neri BR, Chan KW, Kwon YW (2009) Management of massive and irreparable rotator cuff tears. J Shoulder Elbow Surg 18:808–818

    Article  PubMed  Google Scholar 

  • Nikolaou PK, Seaber AV, Glisson RR, Ribbeck BM, Bassett FH 3rd (1986) Anterior cruciate ligament allograft transplantation. Long-term function, histology, revascularization, and operative technique. Am J Sports Med 14:348–360

    Article  PubMed  CAS  Google Scholar 

  • Oh JH, Kim SH, Ji HM, Jo KH, Bin SW, Gong HS (2009) Prognostic factors affecting anatomic outcome of rotator cuff repair and correlation with functional outcome. Arthroscopy 25:30–39

    Article  PubMed  Google Scholar 

  • Olson EJ, Kang JD, Fu FH, Georgescu HI, Mason GC, Evans CH (1988) The biochemical and histological effects of artificial ligament wear particles: in vitro and in vivo studies. Am J Sports Med 16:558–570

    Article  PubMed  CAS  Google Scholar 

  • Petrigliano FA, McAllister DR, Wu BM (2006) Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 22:441–451

    Article  PubMed  Google Scholar 

  • Poehling GG, Curl WW, Lee CA, Ginn TA, Rushing JT, Naughton MJ et al (2005) Analysis of outcomes of anterior cruciate ligament repair with 5-year follow-up: allograft versus autograft. Arthroscopy 21:774–785

    PubMed  Google Scholar 

  • Rathbone S, Maffulli N, Cartmell SH (2012) Most British surgeons would consider using a tissue-engineered anterior cruciate ligament: a questionnaire study. St Cells Int 2012:303724

    Google Scholar 

  • Ricchetti ET, Aurora A, Iannotti JP, Derwin KA (2012) Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg 21:251–265

    Article  PubMed  Google Scholar 

  • Rodrigues MT, Reis RL, Gomes ME (2013) Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regen Med 7:673–686

    Article  PubMed  CAS  Google Scholar 

  • Romanini E, D’Angelo F, De Masi S, Adriani E, Magaletti M, Lacorte E et al (2010) Graft selection in arthroscopic anterior cruciate ligament reconstruction. J Orthop Traumatol 11:211–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindhelm K, Rogers GJ, Milthorpe BK, Hall PJ, Howlett CR, Sekel R et al (1991) Autograft and Leeds-Keio reconstructions of the ovine anterior cruciate ligament. Clin Orthop Relat Res 278–293

    Google Scholar 

  • Schindler OS (2012) Surgery for anterior cruciate ligament deficiency: a historical perspective. Knee Surg Sports Traumatol Arthrosc 20:5–47

    Article  PubMed  Google Scholar 

  • Schubert T, Bigare E, Van Isacker T, Gigi J, Delloye C, Cornu O (2012) Analysis of predisposing factors for contamination of bone and tendon allografts. Cell Tissue Bank 13:421–429

    Article  PubMed  Google Scholar 

  • Shah N, Morsi Y, Manasseh R (2014) From mechanical stimulation to biological pathways in the regulation of stem cell fate. Cell Biochem Funct 32(4):309–25

    Google Scholar 

  • Sherman OH, Banffy MB (2004) Anterior cruciate ligament reconstruction: which graft is best? Arthroscopy 20:974–980

    Article  PubMed  Google Scholar 

  • Stone KR, Abdel-Motal UM, Walgenbach AW, Turek TJ, Galili U (2007a) Replacement of human anterior cruciate ligaments with pig ligaments: a model for anti-non-gal antibody response in long-term xenotransplantation. Transplant 83:211–219

    Article  CAS  Google Scholar 

  • Stone KR, Walgenbach AW, Turek TJ, Somers DL, Wicomb W, Galili U (2007b) Anterior cruciate ligament reconstruction with a porcine xenograft: a serologic, histologic, and biomechanical study in primates. Arthroscopy 23:411–419

    Article  PubMed  Google Scholar 

  • Tischer T, Aryee S, Wexel G, Steinhauser E, Adamczyk C, Eichhorn S et al (2010) Tissue engineering of the anterior cruciate ligament-sodium dodecyl sulfate-acellularized and revitalized tendons are inferior to native tendons. Tissue Eng Part A 16:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Vangsness CT Jr, Garcia IA, Mills CR, Kainer MA, Roberts MR, Moore TM (2003) Allograft transplantation in the knee: tissue regulation, procurement, processing, and sterilization. Am J Sports Med 31:474–481

    PubMed  Google Scholar 

  • Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL (2004) Tissue engineering of ligaments. Annu Rev Biomed Eng 6:131–156

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Gardiner BS, Lin Z, Rubenson J, Kirk TB, Wang A et al (2013) Bioreactor design for tendon/ligament engineering. Tissue Eng Part B Rev 19:133–146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Webb K, Hitchcock RW, Smeal RM, Li W, Gray SD, Tresco PA (2006) Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech 39:1136–1144

    Article  PubMed  Google Scholar 

  • Weiss AB, Blazina ME, Goldstein AR, and Alexander H (1985) Ligament replacement with an absorbable copolymer carbon fiber scaffold--early clinical experience. Clin Orthop Relat Res 196:77–85

    Google Scholar 

  • Whitlock PW, Smith TL, Poehling GG, Shilt JS, Van Dyke M (2007a) A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration. Biomaterials 28:4321–4329

    Article  PubMed  CAS  Google Scholar 

  • Whitlock PW, Smith TL, Shilt JS, Van Dyke ME, Poehling GG (2007b) Combined meeting of the International Orthopaedic Research Societies Podium presentation “A novel scaffold for tendon and ligament regeneration derived from human allograft issue”, Honolulu

    Google Scholar 

  • Whitlock PW, Van Dyke M, Poehling GG, Smith TL, Marker DR, Koman LA et al (2009) American Academy of Orthopaedic Surgeons annual meeting scientific exhibit “Functional tissue engineering of tendons and ligaments”, Las Vegas

    Google Scholar 

  • Whitlock PW, Seyler TM, Northam C, Smith TL, Van Dyke ME, Poehling GG et al (2012a) Effect of cyclic strain on the tensile properties of a naturally-derived, decellularized tendon scaffold seeded with allogeneic tenocytes and associated mRNA Expression. J Surg Orthop Adv 22(3):224–32

    Google Scholar 

  • Whitlock PW, Seyler TM, Parks GD, Ornelles DA, Smith TL, Van Dyke ME et al (2012b) A novel process for optimizing musculoskeletal allograft tissue to improve safety, ultrastructural properties, and cell infiltration. J Bone Joint Surg Am 94:1458–1467

    Article  PubMed  Google Scholar 

  • Yilgor C, Yilgor Huri P, Huri G (2012) Tissue engineering strategies in ligament regeneration. St Cells Int 2012:374676

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten M. Seyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg (outside the USA)

About this entry

Cite this entry

Seyler, T.M., Bracey, D.N., Mannava, S., Poehling, G.G., Whitlock, P.W. (2014). Tissue-Engineered Approach to Tendon and Ligament Reconstruction: Current Trends. In: Doral, M., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36801-1_241-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36801-1_241-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36801-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics