Skip to main content

Organic TFTs: Polymers

  • Living reference work entry
  • First Online:
Handbook of Visual Display Technology

Abstract

Polymer semiconductor field-effect transistors are expected to be next-generation devices for use as drivers in displays and a variety of other technological applications. They are of particular interest because of their low-cost fabrication, solution processability, mechanical flexibility, and large-area fabrication capabilities. An overview on the development of polymer-based organic field-effect transistors (OFETs) is discussed with emphasis on device configurations, choice of materials, and device engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

μCP:

Microcontact printing

BBL:

Poly(benzobisimidazobenophenanthroline)

BC/TG:

Bottom contact/top gate

BC/BG:

Bottom contact/bottom gate

BTS:

Benzyltrichlorosilane

CMOS:

Complementary metal-oxide-semiconductor

DMSO:

Dimethyl sulfoxide

F8T2:

Poly(9,9′-dioctylfluorene-co-bithiophene)

FTS:

(Tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane

HMDS:

Hexamethyldisilazane

HOMO:

Highest occupied molecular orbital

ITO:

Indium tin oxide

LUMO:

Lowest unoccupied molecular orbital

MIMIC:

Micro-molding in capillaries

MTP:

Metal transfer printing

nTP:

Nano-transfer printing

OFET:

Organic field-effect transistor

OTS:

Octadecyltrichlorosilane

P3HT:

Poly(3-hexylthiophene)

PBTTT:

Poly(2,5-bis(3-alkylthiophene-2-yl)-thieno[3,2-b]thiophene)

PCBM:

[6,6]-Phenyl C61-butyric acid methyl ester

PDMS:

Polydimethylsiloxane

PEDOT/PSS:

Poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid

PMMA:

Poly(methylmethacrylate)

PQT-12:

Poly(3,3‴-didodecylquaterthiophene)

PS-PMMA-PS:

Poly(styrene-block-methylmethacrylate-block-styrene)

PVP:

Polyvinylphenol

SAM:

Self-assembled monolayer

SEM:

Scanning electron micrograph

TC/BG:

Top contact/bottom gate

VTS:

7-Octenyltrichlorosilane

Further Reading

  • Arias AC, Ready SE, Lujan R, Wong WS, Paul KE, Salleo A, Chabinyc ML, Apte R, Street RA, Wu Y, Liu P, Ong B (2004) All jet-printed polymer thin-film transistor active-matrix backplanes. Appl Phys Lett 85:3304

    Article  Google Scholar 

  • Assadi A, Svensson C, Wiilander M, Inganas O (1988) Field-effect mobility of poly(3-hexylthiophene). Appl Phys Lett 53:195

    Article  Google Scholar 

  • Babel A, Jenekhe SA (2003) High electron mobility in ladder polymer field-effect transistors. J Am Chem Soc 125:13656

    Article  Google Scholar 

  • Bao Z, Locklin J (2007) Organic field-effect transistors. CRC, Boca Raton

    Book  Google Scholar 

  • Bao Z, Dodabalapur A, Lovinger A (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69:4108

    Article  Google Scholar 

  • Beaujuge PM, Pisula W, Tsao HN, Ellinger S, Mullen K, Reynolds JR (2009) Tailoring structure–property relationships in dithienosilole-benzothiadiazole donor-acceptor copolymers. J Am Chem Soc 131:7514

    Article  Google Scholar 

  • Bock C, Pham DV, Kunze U, Käfer D, Witte G, Wöll C (2006) Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes. J Appl Phys 100:114517

    Article  Google Scholar 

  • Briseno AL, Mannsfeld SCB, Reese C, Hancock JM, Xiong Y, Jenekhe SA, Bao Z, Xia Y (2007) Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. Nano Lett 7:2847

    Article  Google Scholar 

  • Briseno AL, Mannsfeld SCB, Shamberger PJ, Ohuchi FS, Bao Z, Jenekhe SA, Xia Y (2008) Self-assembly, molecular packing, and electron transport in n-type polymer semiconductor nanobelts. Chem Mater 20:4712

    Article  Google Scholar 

  • Brown AR, Pomp A, Hart CM, de Leeuw DM (1995) Logic gates made from polymer transistors and their use in ring oscillators. Science 270:972

    Article  Google Scholar 

  • Brütting W (2005) Physics of organic semiconductors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Chang J-F, Sun B, Breiby DW, Nielsen MM, Solling TI, Giles M, McCulloch I, Sirringhaus H (2004) Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mater 16:4772

    Article  Google Scholar 

  • Chen Z, Zheng Y, Yan H, Facchetti A (2009) Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J Am Chem Soc 131:8

    Article  Google Scholar 

  • Chen Z, Lemke H, Albert-Seifried S, Caironi M, Nielsen MM, Heeney M, Zhang W, McCulloch I, Sirringhaus H (2010) High mobility ambipolar charge transport in polyselenophene conjugated polymers. Adv Mater 22:2371

    Article  Google Scholar 

  • Cheng X, Noh Y-Y, Wang J, Tello M, Frisch J, Blum R-P, Vollmer A, Rabe JP, Koch N, Sirringhaus H (2009) Controlling electron and hole charge injection in ambipolar organic field-effect transistors by self-assembled monolayers. Adv Funct Mater 19:2407

    Article  Google Scholar 

  • Cho JH, Lee J, Xia Y, Kim B, He Y, Renn MJ, Lodge TP, Frisbie CD (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900

    Article  Google Scholar 

  • Chua L, Ho PKH, Sirringhaus H, Friend RH (2004) High-stability ultrathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors. Appl Phys Lett 84:3400

    Article  Google Scholar 

  • Chua L-L, Zaumseil J, Chang J-F, Ou EC-W, Ho PK-H, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behavior in organic semiconductors. Nature 434:194

    Article  Google Scholar 

  • Facchetti A (2007) Semiconducting materials for organic field-effect transistors. Mater Today 10:28

    Article  Google Scholar 

  • Fong HH, Pozdin VA, Amassian A, Malliaras GG, Smilgies D-M, He M, Gasper S, Zhang F, Sorensen M (2008) Tetrathienoacene copolymers As high mobility, soluble organic semiconductors. J Am Chem Soc 130:13202

    Article  Google Scholar 

  • Gorman CB, Biebuyck HA, Whitesides GM (1995) Fabrication of patterned, electrically conducting polypyrrole using a self-assembled monolayer: a route to all-organic circuits. Chem Mater 7:526

    Article  Google Scholar 

  • Guo X, Kim FS, Jenekhe SA, Watson MD (2009) Phthalimide-based polymers for high performance organic thin-film transistors. J Am Chem Soc 131:7206

    Article  Google Scholar 

  • Hadziioannou G, Malliaras GG (2007) Semiconducting polymers, chemistry, physics and engineering. Wiley-VCH, Weinheim

    Google Scholar 

  • He M, Li J, Sorensen ML, Zhang F, Hancock RR, Fong HH, Pozdin VA, Smilgies D-M, Malliaras GG (2009) Alkylsubstituted thienothiophene semiconducting materials: structure–property relationships. J Am Chem Soc 131:11930

    Article  Google Scholar 

  • Heeney M, Bailey C, Genevicius K, Shkunov M, Sparrowe D, Tierney S, McCulloch I (2005) Stable polythiophene semiconductors incorporating thieno[2, 3-b]thiophene. J Am Chem Soc 127:1078

    Article  Google Scholar 

  • Hoshino S, Yoshida M, Uemura S, Kodzasa T, Takada N, Kamata T, Yase K (2004) Influence of moisture on device characteristics of polythiophene-based field-effect transistors. J Appl Phys 95:5088

    Article  Google Scholar 

  • Huang Z, Wang P-C, MacDiarmid AG, Xia Y, Whitesides GM (1997) Selective deposition of conducting polymers on hydroxyl-terminated surfaces with printed monolayers of alkylsiloxanes as templates. Langmuir 13:6480

    Article  Google Scholar 

  • Hüttner S, Sommer M, Thelakkat M (2008) n-Type organic field effect transistors from perylene bisimide block copolymers and homopolymers. Appl Phys Lett 92:093302

    Article  Google Scholar 

  • Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao Z (2009) Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J Am Chem Soc 131:9396

    Article  Google Scholar 

  • Kim DH, Lee B-L, Moon H, Kang HM, Jeong EJ, Park J-I, Han K-M, Lee S, Yoo BW, Koo BW, Kim JY, Lee WH, Cho K, Becerril HA, Bao Z (2009) Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J Am Chem Soc 131:6124

    Article  Google Scholar 

  • Kim FS, Guo X, Watson WD, Jenekhe SA (2010) High-mobility ambipolar transistors and high-gain inverters from a donor-acceptor copolymer semiconductor. Adv Mater 22:478

    Article  Google Scholar 

  • Klauk H (2006) Organic electronics, materials, manufacturing and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Kline RJ, McGehee MD, Kadnikova EN, Liu J, Frechet JMJ, Toney MF (2005) Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38:3312

    Article  Google Scholar 

  • Krumm J, Eckert E, Glauert WH, Ullmann A, Fix W, Clemens W (2004) A polymer transistor circuit using PDHTT. IEEE Electron Dev Lett 25:399

    Article  Google Scholar 

  • Kymissis I (2009) Organic field effect transistors, theory, fabrication and characterization. Springer, New York

    Book  Google Scholar 

  • Lee J, Kim JH, Im S (2003a) Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass. Appl Phys Lett 83:2689

    Article  Google Scholar 

  • Lee I, Hammond PT, Rubner MF (2003b) Selective electroless nickel plating of particle arrays on polyelectrolyte multilayers. Chem Mater 15:4583

    Article  Google Scholar 

  • Letizia JA, Salata MR, Tribout CM, Facchetti A, Ratner MA, Marks TJ (2008) n-Channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. J Am Chem Soc 130:9679

    Article  Google Scholar 

  • Li Y, Wu Y, Liu P, Birau M, Pan H, Ong BS (2006) Poly(2, 5-bis(2-thienyl)-3, 6-dialkylthieno[3, 2-b]thiophene)s high-mobility semiconductors for thin-film transistors. Adv Mater 18:3029

    Article  Google Scholar 

  • Li J, Qin F, Li CM, Bao Q, Chan-Park MB, Zhang W, Qin J, Ong BS (2008) High-performance thin-film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles. Chem Mater 20:2057

    Article  Google Scholar 

  • Lim JA, Cho JH, Park YD, Kim DH, Hwang M, Cho K (2006) Solvent effect of inkjet printer source/drain electrodes on electrical properties of polymer thin-film transistors. Appl Phys Lett 88:082102

    Article  Google Scholar 

  • Lim JA, Liu F, Ferdous S, Muthukumar M, Briseno AL (2010) Polymer semiconductor crystals. Mater Today 13:12

    Article  Google Scholar 

  • Liu J, Zhang R, Sauve G, Kowalewski T, McCullough RD (2008) Highly disordered polymer field effect transistors: N-alkyl dithieno[3, 2-b:2', 3'-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. J Am Chem Soc 130:13167

    Article  Google Scholar 

  • Liu J, Zhang R, Osaka I, Mishra S, Javier AE, Smilgies D-M, Kowalewski T, McCullough RD (2009) Transistor paint: environmentally stable N-alkyldithienopyrrole and bithiazole-based copolymer thin-film transistors show reproducible high mobilities without annealing. Adv Funct Mater 19:3427

    Article  Google Scholar 

  • Lu G, Usta H, Risko C, Wang L, Facchetti A, Ratner MA, Marks TJ (2008) Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. experiment and theory. J Am Chem Soc 130:7670

    Article  Google Scholar 

  • Majewski LA, Kingsley JW, Balocco C, Song AM (2006) Influence of processing conditions on the stability of poly(3-hexylthiophene)-based field-effect transistors. Appl Phys Lett 88:222108

    Article  Google Scholar 

  • Maliakal A, Katz H, Cotts PM, Subramoney S, Mirau P (2005) Inorganic oxide core, polymer shell nanocomposite as a high k gate dielectric for flexible electronics applications. J Am Chem Soc 127:14655

    Article  Google Scholar 

  • McCulloch I, Bailey C, Giles M, Heeney M, Love I, Shkunov M, Sparrowe D, Tierney S (2005) Influence of molecular design on the field-effect transistor characteristics of terthiophene polymers. Chem Mater 17:1381

    Article  Google Scholar 

  • McCulloch I, Heeney M, Bailey C, Genevicius K, MacDonald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang W, Chabinyc ML, Kline RJ, Mcgehee MD, Toney MF (2006) Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 5:328

    Article  Google Scholar 

  • Meijer EJ, De Leeuw DM, Setayesh S, Veenendaal EV, Huisman BH, Blom PWM, Hummelen JC, Scherf U, Klapwijk TM (2003) Solution-processed ambipolar organic field-effect transistors and inverters. Nat Mater 2:678

    Article  Google Scholar 

  • Murphy AR, Liu J, Luscombe C, Kavulak D, Frechet JMJ, Kline RJ, McGehee MD (2005) Synthesis, characterization, and field-effect transistor performance of carboxylate-functionalized polythiophenes with increased air stability. Chem Mater 17:4892

    Article  Google Scholar 

  • Ong B, Wu Y, Jiang L, Liu P, Murti K (2004a) Polythiophene-based field-effect transistors with enhanced air stability. Synth Met 142:49

    Article  Google Scholar 

  • Ong BS, Wu Y, Liu P, Gardner S (2004b) High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc 126:3378

    Article  Google Scholar 

  • Osaka I, Sauvé G, Zhang R, Kowalewski T, McCullough RD (2007) Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv Mater 19:4160

    Article  Google Scholar 

  • Osaka I, Abe T, Shinamura S, Miyazaki E, Takimiya K (2010) High-mobility semiconducting naphthodithiophene copolymers. J Am Chem Soc 132:5000

    Article  Google Scholar 

  • Pan H, Li Y, Wu Y, Liu P, Ong BS, Zhu S, Xu G (2006) Synthesis and thin-film transistor performance of poly(4, 8-didodecylbenzo[1, 2-b:4, 5-b']dithiophene). Chem Mater 18:3237

    Article  Google Scholar 

  • Pan H, Li Y, Wu Y, Liu P, Ong BS, Zhu S, Xu G (2007a) Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J Am Chem Soc 129:4112

    Article  Google Scholar 

  • Pan H, Li Y, Wu Y, Liu P, Ong BS, Zhu S, Xu G (2007b) Benzodithiophene copolymer-a low-temperature, solution-processed high-performance semiconductor for thin-film transistors. Adv Funct Mater 17:3574

    Article  Google Scholar 

  • Panzer MJ, Frisbie CD (2008) Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv Mater 20:3177

    Article  Google Scholar 

  • Parashkov R, Becker E, Riedl T, Johannes H, Kowalsky W (2005) Large area electronics using printing methods. Proc IEEE 93:1321

    Article  Google Scholar 

  • Park YD, Kim DH, Jang Y, Hwang M, Lim JA, Cho K (2005) Low-voltage polymer thin-film transistors with a self-assembled monolayer as the gate dielectric. Appl Phys Lett 87:243509

    Article  Google Scholar 

  • Paul KE, Wong WS, Ready SE, Street RA (2003) Additive jet printing of polymer thin-film transistors. Appl Phys Lett 83:2070

    Article  Google Scholar 

  • Rieger R, Beckmann D, Pisula W, Steffen W, Kastler M, Mullen K (2010) Rational optimization of benzo[2, 1-b;3, 4-b']dithiophene-containing polymers for organic field-effect transistors. Adv Mater 22:83

    Article  Google Scholar 

  • Salleo A, Arias AC (2007) Solution based self-assembly of an array of polymeric thin-film transistors. Adv Mater 19:3540

    Article  Google Scholar 

  • Salleo A, Chabinyc ML, Yang MS, Street RA (2002) Polymer thin-film transistors with chemically modified dielectric interfaces. Appl Phys Lett 81:4383

    Article  Google Scholar 

  • Sholin V, Carter SA, Street RA, Arias AC (2008) High work function materials for source/drain contacts in printed polymer thin film transistors. Appl Phys Lett 92:063307

    Article  Google Scholar 

  • Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685

    Article  Google Scholar 

  • Sirringhaus H, Wilson RJ, Friend RH, Inbasekaran M, Wu W, Woo EP, Grell M, Bradley DDC (2000a) Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl Phys Lett 77:406

    Article  Google Scholar 

  • Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000b) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123

    Article  Google Scholar 

  • Steckler TT, Zhang X, Hwang J, Honeyager R, Ohira S, Zhang X-H, Grant A, Ellinger S, Odom SA, Sweat D, Tanner DB, Rinzler AG, Barlow S, Bredas J-L, Kippelen B, Marder SR, Reynolds JR (2009) A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer. J Am Chem Soc 131:2824

    Article  Google Scholar 

  • Tate J, Rogers JA, Jones CDW, Vyas B, Murphy DW, Li W, Bao Z, Slusher RE, Dodabalapur A, Katz HE (2000) Anodization and microcontact printing on electroless silver: solution-based fabrication procedures for low-voltage electronic systems with organic active components. Langmuir 16:6054

    Article  Google Scholar 

  • Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49:1210

    Article  Google Scholar 

  • Umeda T, Kumaki D, Tokito S (2009) Surface-energy-dependent field-effect mobilities up to 1 cm2/V s for polymer thin-film transistor. J Appl Phys 105:024516

    Article  Google Scholar 

  • Usta H, Lu G, Facchetti A, Marks TJ (2006) Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. J Am Chem Soc 128:9034

    Article  Google Scholar 

  • Usta H, Risko C, Wang Z, Huang H, Deliomeroglu MK, Zhukhovitskiy A, Facchetti A, Marks TJ (2009) Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-Channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J Am Chem Soc 131:5586

    Article  Google Scholar 

  • van Mullekom HAM, Vekemansb JAJM, Havingab EE, Meijer EW (2001) Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater Sci Eng 32:1

    Article  Google Scholar 

  • Wang G, Moses D, Heeger AL, Zhang H, Narasimhan M, Demaray RE (2004) Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator. J Appl Phys 95:316

    Article  Google Scholar 

  • Wilbur JL, Kumar A, Kim E, Whitesides GM (1994) Microfabrication by microcontact printing of self-assembled monolayers. Adv Mater 6:600

    Article  Google Scholar 

  • Wu Y, Liu P, Gardner S, Ong BS (2005) Poly(3, 3″-dialkylterthiophene)s: room-temperature, solution-processed, high-mobility semiconductors for organic thin-film transistors. Chem Mater 17:221

    Article  Google Scholar 

  • Xia Y, Kim E, Whitesides GM (1996a) Microcontact printing of alkanethiols on silver and its application in microfabrication. J Electrochem Soc 143:1070

    Article  Google Scholar 

  • Xia Y, Kim E, Mrksich M, Whitesides GM (1996b) Microcontact printing of alkanethiols on copper and its application in microfabrication. Chem Mater 8:601

    Article  Google Scholar 

  • Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679

    Article  Google Scholar 

  • Yoon M, Yan H, Facchetti A, Marks TJ (2005) Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. J Am Chem Soc 127:10388

    Article  Google Scholar 

  • Yoon M-H, Kim C, Facchetti A, Marks TJ (2006) Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J Am Chem Soc 128:12851

    Article  Google Scholar 

  • Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296

    Article  Google Scholar 

  • Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder SR (2007) A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc 129:7246

    Article  Google Scholar 

  • Zhang M, Tsao HN, Pisula W, Yang C, Mishra AK, Mullen K (2007) Field-effect transistors based on a benzothiadiazole cyclopentadithiophene copolymer. J Am Chem Soc 129:3472

    Article  Google Scholar 

  • Zschieschang U, Klauk H, Halik M, Schmid G, Dehm C (2003) Flexible organic circuits with printed gate electrodes. Adv Mater 15:1147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Liu, F., Ferdous, S., Briseno, A.L. (2015). Organic TFTs: Polymers. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35947-7_51-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35947-7_51-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-35947-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics