Skip to main content

Molecular Concentration Profiling in the Skin Using Confocal Raman Spectroscopy

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

The uppermost layer of the skin – the stratum corneum (SC) – plays a vital role in the functioning and protection of the human body. It provides mechanical protection and regulates water movement in and out. Despite the relatively small dimensions of the SC over most of the body parts (its thickness is of the order of 20 μm over a large portion of the body), it is far from a homogeneous structure both physically and chemically. Chemical concentrations change from its surface inward, and these changes are responsible for both the properties it possesses and the processes occurring within it. Furthermore, with the application of topical cosmetic products becoming more popular and widespread, especially in the antiaging market, the monitoring of ingredients that are capable of penetrating into the skin from the outside, which may also influence the processes occurring within and properties of the SC, is now a necessity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Blank IH. Factors which influence the water content of the stratum corneum. J Invest Dermatol. 1952;18:433–40.

    Article  CAS  PubMed  Google Scholar 

  2. Grubauer G, Elias PM, Feingold KR. Transepidermal water loss: the signal for recovery of barrier structure and function. J Lipid Res. 1989;30:323–33.

    CAS  PubMed  Google Scholar 

  3. Loden M. Biophysical properties of dry atopic and normal skin with special reference to skin care products. Acta Derm Venereol Suppl (Stockh). 1995;192:1–48.

    CAS  Google Scholar 

  4. Agache P. Stratum corneum histopathology. In: Agache P, Humbert P, editors. Measuring the skin. Berlin: Springer; 2004. p. 95–100.

    Chapter  Google Scholar 

  5. Warner RR, Myers MC, Taylor DA. Electron probe analysis of human skin: determination of the water concentration profile. J Invest Dermatol. 1988;90:218–44.

    Article  CAS  PubMed  Google Scholar 

  6. Warner RR, Lilly NA. Correlation of water content with ultrastructure in the stratum corneum. In: Elsner P, Berardesca E, Maibach HI, editors. Bioengineering of the skin: water and the stratum corneum. Boca Raton: CRC Press; 1994. p. 3–12.

    Google Scholar 

  7. Richter T, Peuckert C, Sattler M, et al. Dead but highly dynamic – the stratum corneum is divided into three hydration zones. Skin Pharmacol Physiol. 2004;17:246–57.

    Article  CAS  PubMed  Google Scholar 

  8. Bouwstra JA, de Graff A, Gooris GS, et al. Water distribution and related morphology in human stratum corneum at different hydration levels. J Invest Dermatol. 2003;120(5):750–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rawlings AV, Scott IR, Harding CR, Bowser P. Stratum corneum moisturization at the molecular level. J Invest Dermatol. 1994;103:731–4.

    Article  CAS  PubMed  Google Scholar 

  10. Brancaleon L, Bamberg MP, Sakamaki T, Kollias N. Attenuated total reflection-Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo. J Invest Dermatol. 2001;116:380–6.

    Article  CAS  PubMed  Google Scholar 

  11. Arimoto H, Egawa M, Yamada Y. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin. Skin Res Technol. 2005;11:27–35.

    Article  PubMed  Google Scholar 

  12. Rawlings AV, Scott IR, Harding CR, Browser PA. Stratum corneum moisturization at the molecular level. J Invest Dermatol. 1994;17(1):731–40.

    Article  Google Scholar 

  13. Caspers PJ, Lucassen GW, Carter EA, et al. In vivo confocal Raman microspectrometer of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol. 2001;116:434–42.

    Article  CAS  PubMed  Google Scholar 

  14. Wertz PW. Stratum corneum lipids and water. Exog Dermatol. 2004;3:53–6.

    Article  CAS  Google Scholar 

  15. Rawlings AV, Rogers J, Mayo AM, et al. Changes in lipids in the skin ageing process. Biocosmet Skin Aging. 1993;1:31–45.

    Google Scholar 

  16. Rogers J, Harding C, Mayo A, Banks J, Rawlings A. Stratum corneum lipids: the effects of the ageing and the seasons. Arch Dermatol Res. 1996;288:765–70.

    Article  CAS  PubMed  Google Scholar 

  17. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A. Decreased levels of ceramides in stratum corneum of atopic dermatitis: an etiological factor in atopic dry skin? J Invest Dermatol. 1991;96:523–6.

    Article  CAS  PubMed  Google Scholar 

  18. Prasch T, Knübel G, Schmidt-Fonk K, Ortanderl S, Nieveler S, Förster T. Infrared spectroscopy of the skin: influencing the stratum corneum with cosmetic products. Int J Cosmet Sci. 2000;22:371–83.

    Article  CAS  PubMed  Google Scholar 

  19. Notingher I, Imhof RE. Mid-infrared in vivo depth-profiling of topical chemicals on skin. Skin Res Technol. 2004;10:113–21.

    Article  PubMed  Google Scholar 

  20. Stamatas GN, de Sterke J, Hauser M, von Stetten O, van der Pol A. Lipid uptake and skin occlusion following topical application of oils on adult and infant skin. J Dermatol Sci. 2008;50:135–42.

    Article  CAS  PubMed  Google Scholar 

  21. Chrit L, Bastien P, Sockalingum GD, Batisse D, Leroy F, Manfait M, Hadjur C. An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream. Skin Pharmacol Physiol. 2006;19:207–15.

    Article  CAS  PubMed  Google Scholar 

  22. Chrit L, Bastien P, Biatry B, Simonnet J-T, Potter A, Minondo AM, Flament F, Bazin R, Sockalingum GD, Leroy F, Manfait M, Hadjur C. In vitro and in vivo confocal Raman study of human skin hydration: assessment of anew moisturizing agent, pMPC. Biopolymers. 2006;85:359–69.

    Article  Google Scholar 

  23. Pudney PD, Mélot M, Caspers PJ, Van Der Pol A, Puppels GJ. An in vivo confocal Raman study of the delivery of trans retinol to the skin. Appl Spectrosc. 2007;61(8):804–11.

    Article  CAS  PubMed  Google Scholar 

  24. Mohammed D, Matts PJ, Hadgraft J, Lane ME. In vitro – in vivo correlation in skin permeation. J Pharm Res. 2014;31(2):394–400.

    Article  CAS  Google Scholar 

  25. Bonnist EY, Gorce JP, Mackay C, Pendlington RU, Pudney PD. Measuring the penetration of a skin sensitizer and its delivery vehicles simultaneously with confocal Raman spectroscopy. Skin Pharmacol Physiol. 2011;24(5):274–83.

    Article  CAS  PubMed  Google Scholar 

  26. Egawa M, Sato Y. In vivo evaluation of two forms of urea in the skin by Raman spectroscopy after application of urea-containing cream. Skin Res Technol. 2015;21(3):259–64.

    Article  CAS  PubMed  Google Scholar 

  27. Franzen L, Anderski J, Windbergs M. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy – a systematic in vitro validation study. Eur J Pharm Biopharm. 2015;95(Pt A):110–6.

    Article  CAS  PubMed  Google Scholar 

  28. Choe C, Lademann J, Darvin ME. Confocal Raman microscopy for investigating the penetration of various oils into the human skin in vivo. J Dermatol Sci. 2015;79(2):176–8.

    Article  CAS  PubMed  Google Scholar 

  29. Dikstein S, Zlotogorski A. Measurement of skin pH. Acta Derm Venereol (Stockh). 1994;185:18–20.

    CAS  Google Scholar 

  30. Ohman H, Vahlquist A. In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol (Stockh). 1994;74:375–9.

    CAS  Google Scholar 

  31. Krien PM, Kermici M. Evidence for the existence of self regulated enzymatic process within the human stratum corneum: an unexpected role for urocanic acid. J Invest Dermatol. 2000;115:414–20.

    Article  CAS  PubMed  Google Scholar 

  32. Aberg C, Wennerstrom H, Sparr E. Transport processes in responding lipid membranes: a possible mechanism for pH gradient in the stratum corneum. Langmuir. 2008;24:8061–70.

    Article  PubMed  Google Scholar 

  33. Lieckfeldt R, Villalain J, Gomez-Fernandez JC, Lee G. Apparent pKa of the fatty acids within ordered mixtures of model human stratum corneum lipids. Pharmacol Res. 1995;12:1614–7.

    Article  CAS  Google Scholar 

  34. Patterson MJ, Galloway SD, Nimmo NA. Variations in regional sweat composition in normal human males. Exp Physiol. 2000;85:869–75.

    Article  CAS  PubMed  Google Scholar 

  35. Behne M, Oda Y, Murata S, Holleran WM, Mauro TM. Functional role of the sodium-hydrogen antiporter, NHE1, in the epidermis: pharmacologic and NHE1 Null-Allele mouse studies. J Invest Dermatol. 2000;114:797.

    Article  Google Scholar 

  36. Visscher MO, Chatterjee R, Munson KS, Pickens WL, Hoath SB. Changes in diapered and nondiapered infant skin over the first month of life. Pediatr Dermatol. 2000;17:45–51.

    Article  CAS  PubMed  Google Scholar 

  37. Mauro T, Holleran WM, Grayson S, et al. Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res. 1998;290:215–22.

    Article  CAS  PubMed  Google Scholar 

  38. Fluhr JW, Behne MJ, Brown BE, Moskowitz DG, Selden C, Mao-Qiang M, Mauro TM, Elias PM, Fiengold KR. Stratum corneum acidification in neonatal skin: secretory Phospholipase A2 and the sodium/hydrogen antiporter-1 acidify neonatal rat stratum corneum. J Invest Dermatol. 2004;122:320–9.

    Article  CAS  PubMed  Google Scholar 

  39. Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM. Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J. 2002;83:1682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Menon GK, Grayson S, Elias PM. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol. 1985;84:508–12.

    Article  CAS  PubMed  Google Scholar 

  41. Mauro T, Bench G, Sidderas-Haddad E, Fiengold K, Elias PM, Cullander C. Acute barrier perturbation abolishes the Ca2 + and K + gradients in murine epidermis: quantitative measurement using PIXE. J Invest Dermatol. 1998;111:1198–201.

    Article  CAS  PubMed  Google Scholar 

  42. Elias PM, Nau P, Hanley K, et al. Formation of the epidermal calcium gradient coincides with key milestones of barrier ontogenesis in the rodent. J Invest Dermatol. 1998;110:399–404.

    Article  CAS  PubMed  Google Scholar 

  43. Elias PM, Ahn SK, Brown BE, Crumrine D, Feingold KR. Origin of the epidermal calcium gradient: regulation by barrier status and role of active vs passive mechanisms. J Invest Dermatol. 2002;119:1269–74.

    Article  CAS  PubMed  Google Scholar 

  44. Williams AC, Barry BW, Edwards HGM, Farwell DW. A critical comparison of some Raman spectroscopic techniques for studies of human stratum corneum. Pharm Res. 1993;10:1642–7.

    Article  CAS  PubMed  Google Scholar 

  45. Williams AC, Edwards HGM, Barry BW. Fourier transform Raman spectroscopy. A novel application for examining human stratum corneum. Int J Pharm. 1992;81:R11–4.

    Article  Google Scholar 

  46. Lucassen GW, Caspers PJ, Puppels GJ. In vivo infrared and Raman spectroscopy of human stratum corneum. Proc SPIE. 1998;3257:52–61.

    Article  CAS  Google Scholar 

  47. Shim MG, Wilson BC. Development of an in vivo Raman spectroscopic system for diagnostic applications. J Raman Spectrosc. 1997;28:131–42.

    Article  CAS  Google Scholar 

  48. Caspers PJ, Lucassen GW, Wolthuis R, et al. In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy. 1998;4:S31–9.

    Article  CAS  PubMed  Google Scholar 

  49. Caspers PJ, Lucassen GW, Bruining HJ, Puppels GJ. Automated depth-scanning confocal Raman Microspectrometer. For rapid in vivo determination of water concentration profiles in human skin. J Raman Spectrosc. 2000;31:813–8.

    Article  CAS  Google Scholar 

  50. Caspers PJ, Lucassen GW, Puppels GJ. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J. 2003;85:572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chrit L, Hadjur C, Morel S, et al. In vivo chemical investigation of human skin using a confocal Raman fiber optic microprobe. J Biomed Opt. 2005;10(4):44007.

    Article  CAS  PubMed  Google Scholar 

  52. Egawa M, Hirao T, Takahashi M. In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy. Acta Derm Venereol. 2007;87(1):4–8.

    Article  PubMed  Google Scholar 

  53. Egawa M, Tagami H. Comparison of the depth profiles of water and water binding substances in the stratum corneum determined by Raman spectroscopy between the cheek and volar forearm: effects of age, seasonal changes and artificial forced hydration. Br J Dermatol. 2008;158:251–60.

    Article  CAS  PubMed  Google Scholar 

  54. Chrit L, Bastien P, Sockalingum GD, et al. An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream. Skin Pharmacol Physiol. 2006;4:207–15.

    Article  Google Scholar 

  55. Chrit L, Bastien P, Biatry B, et al. In vitro and in vivo confocal Raman study of human skin hydration: assessment of a new moisturizing agent, pMPC. Biopolymers. 2007;85(4):359–69.

    Article  CAS  PubMed  Google Scholar 

  56. Crowther J, Sieg A, Blenkiron P, et al. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br J Dermatol. 2008;159:567–77.

    CAS  PubMed  Google Scholar 

  57. Naito S, Min YK, Osanai O, Kitahara T, Hiruma H, Hamguchi H. In vivo measurement of human dermis by 1064nm-excited fiber Raman spectroscopy. Skin Res Technol. 2008;14:18–25.

    Article  CAS  PubMed  Google Scholar 

  58. Welzel J. Optical coherence tomography in dermatology: a review. Skin Res Technol. 2001;7:1–9.

    Article  CAS  PubMed  Google Scholar 

  59. Ya-Xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin – relationship to the anatomical locations on the body, age, sex and physical parameters. Arch Dermatol Res. 1999;291:555–9.

    Article  CAS  PubMed  Google Scholar 

  60. Gambichler T, Boms S, Stacker M, et al. Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison. J Eur Acad Dermatol Venereol. 2006;20(7):791–5.

    CAS  PubMed  Google Scholar 

  61. Lademann J, Otberg N, Richter H, et al. Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis. Skin Res Technol. 2007;13(2):119–32.

    Article  PubMed  Google Scholar 

  62. Norlen L. Stratum corneum keratin structure, function and formation – a comprehensive review. Int J Cosmet Sci. 2006;28(6):397–425.

    Article  CAS  PubMed  Google Scholar 

  63. Wu J, Polefka TG. Confocal Raman microspectroscopy of stratum corneum: a pre-clinical validation study. Int J Cosmet Sci. 2008;30:47–56.

    Article  CAS  PubMed  Google Scholar 

  64. Matts PJ, Gray J, Rawlings AV. The “dry skin cycle” – a new model of dry skin and mechanisms for intervention, International congress and symposium series, vol. 256. London: The Royal Society of Medicine Press; 2005. p. 1–38.

    Google Scholar 

  65. Loden M. The clinical benefit of moisturizers. JEADV. 2005;19:672–88.

    CAS  PubMed  Google Scholar 

  66. Breternitz M, Kowatski D, Langenauer M, et al. Placebo controlled, double blind, randomized prospective study of a glycerol-based emollient on eczematous skin in atopic dermatitis: biophysical and clinical evaluation. Skin Pharmacol Physiol. 2008;21:39–45.

    Article  CAS  PubMed  Google Scholar 

  67. Summers RS, Summers B, Chandar P, et al. The effect of lipids with and without humectants on skin xerosis. J Soc Cosmet Chem. 1996;47:27–39.

    CAS  Google Scholar 

  68. Rawlings AV, Watkinson A, Hope J, et al. The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch Dermatol Res. 1995;287:457–64.

    Article  CAS  PubMed  Google Scholar 

  69. Held E, Sveinsdottir S, Agner T. Effect of long term use of moisturizer on skin hydration, barrier function and susceptibility to irritants. Acta Derm Venereol. 1999;79:49–51.

    Article  CAS  PubMed  Google Scholar 

  70. Zachariae C, Held E, Johansen JD, et al. Effect of a moisturizer on skin susceptibility to NiCl2. Acta Derm Venereol. 2003;83:93–7.

    Article  CAS  PubMed  Google Scholar 

  71. Berardesca E, Distante F, Vignoli GP, et al. Alpha hydroxyacids modulate stratum corneum barrier function. Br J Dermatol. 1997;137:934–8.

    Article  CAS  PubMed  Google Scholar 

  72. Buraczewska I, Berne B, Lindberg M, et al. Changes in skin barrier function following long-term treatment with moisturizers, a randomized controlled trial. Br J Dermatol. 2007;156:492–8.

    Article  CAS  PubMed  Google Scholar 

  73. Barany E, Lindberg M, Loden M. Unexpected skin barrier influence from non-ionic emulsifiers. Int J Pharm. 2000;195:189–95.

    Article  CAS  PubMed  Google Scholar 

  74. Fluhr JW, Gloor M, Lehmann L, et al. Glycerol accelerates recovery of barrier function in vivo. Acta Dermatol Venereol. 1999;79:418–21.

    Article  CAS  Google Scholar 

  75. Loden M, Andersson AC, Andersson C, et al. Instrumental and dermatologist evaluation of the effect of glycerine and urea on dry skin in atopic dermatitis. Skin Res Technol. 2001;7:209–13.

    Article  CAS  PubMed  Google Scholar 

  76. Rawlings AV, Conti A, Verdejo P, et al. The effect of lactic acid isomers on epidermal lipid biosynthesis and stratum corneum barrier function. Arch Dermatol Res. 1996;288:383–90.

    Article  CAS  PubMed  Google Scholar 

  77. Norlen L, Emilson A, Forslind B. Stratum corneum swelling. Biophysical and computer assisted quantitative assessments. Arch Dermatol Res. 1997;289:506–13.

    Article  CAS  PubMed  Google Scholar 

  78. Richter T, Muller JH, Schwarz UD, et al. Investigation of the swelling of human skin cells in liquid media by tapping mode scanning force microscopy. Appl Phys A. 2001;A72:S125–8.

    Article  Google Scholar 

  79. Caussin J, Groenink HWW, de Graaff AM, et al. Lipophilic and hydrophilic moisturizers show different actions on human skin as revealed by cryo-scanning electron microscopy. Exp Dermatol. 2007;16:891–8.

    Article  CAS  PubMed  Google Scholar 

  80. Orth DS, Appa Y, Contard P, et al. Effect of high glycerin moisturizers on the ultrastructure of the stratum corneum. In: Poster at the 53rd annual meeting of the American academy of dermatology. Feb 1995.

    Google Scholar 

  81. Orth DS, Appa Y. Glycerine: a natural ingredient for moisturizing skin. In: Loden M, Maibach HI, editors. Dry skin and moisturizers: chemistry & function. Boca Raton: CRC Press; 2000. p. 213–28.

    Google Scholar 

  82. Fluhr JW, Bornkessel A, Berardesca E. Glycerol-just a moisturizer? Biological and biophysical effects. In: Loden M, Maibach HI, editors. Dry skin and moisturizers. 2nd ed. London: Taylor & Francis; 2006. p. 227–44.

    Google Scholar 

  83. Jacobson EL, Kim H, Kim M, et al. A topical lipophilic niacin derivative increases NAD, epidermal differentiation and barrier function in photodamaged skin. Exp Dermatol. 2007;16(6):490–9.

    Article  CAS  PubMed  Google Scholar 

  84. Loden M, Wessman C. The influence of a cream containing 20% glycerin and its vehicle on skin barrier properties. Int J Cosmet Sci. 2001;23:115–9.

    Article  CAS  PubMed  Google Scholar 

  85. Fluhr JW, Mao-Qiang M, Brown BE, et al. Glycerol regulates stratum corneum hydration in sebaceous gland deficient (Asebia) mice. J Invest Dermatol. 2003;120:728–37.

    Article  CAS  PubMed  Google Scholar 

  86. Choi EH, Man MQ, Wang F, et al. Is endogenous glycerol a determinant of stratum corneum hydration in humans? J Invest Dermatol. 2005;125:288–93.

    CAS  PubMed  Google Scholar 

  87. Crowther JM, Matts PJ. Publication in preparation.

    Google Scholar 

  88. Mohammed D, Crowther JM, Matts PJ, Hadgraft J, Lane ME. Influence of niacinamide containing formulations on the molecular and biophysical properties of the stratum corneum. Int J Pharm. 2013;441(1–2):192–201.

    Article  CAS  PubMed  Google Scholar 

  89. Nikolovski J, Stamatas GN, Kollias N, Wiegand C. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop though the first year of life. J Invest Dermatol. 2008;128:1728–36.

    Article  CAS  PubMed  Google Scholar 

  90. Boireau-Adamezyk E, Baillet-Guffroy A, Stamatas GN. Age-dependent changes in stratum corneum barrier function. Skin Res Technol. 2014;20(4):409–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Matts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Crowther, J.M., Matts, P.J. (2015). Molecular Concentration Profiling in the Skin Using Confocal Raman Spectroscopy. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_71-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_71-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics