Skip to main content

Morphological Evidence for Primate Origins and Supraordinal Relationships

  • Living reference work entry
  • First Online:
Handbook of Paleoanthropology

Abstract

There are five major scenarios that have been advanced to account for the early events in the origination of the order Primates: a transition from terrestriality to arboreality, the adoption of a grasp-leaping mode of locomotion, the evolution of features for visual predation, an adaptation to terminal branch feeding occurring during angiosperm diversification, or a combination involving terminal branch feeding followed by visual predation. These hypotheses are assessed using both neontological and fossil data. Of the five scenarios, the angiosperm diversification hypothesis is not contradicted by modern data and is found to be the most consistent with the fossil record. In particular, the evolution of features for manual grasping and dental processing of fruit in the earliest primates (primitive plesiadapiforms), and the subsequent development of features for better grasping and more intense frugivory in the common ancestor of Euprimates and Plesiadapoidea, is consistent with a close relationship between early primate and angiosperm evolution. All the other scenarios are less consistent with the pattern of trait acquisition through time observed in the fossil record. Consideration of non-euprimates (e.g., scandentians and plesiadapiforms) is found to be essential to viewing primate origins as a series of incremental steps rather than as an event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci U S A 88:10317–10321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allman J (1977) Evolution of the visual system in the early primates. Prog Psychobiol Physiol Psychol 7:1–53

    Google Scholar 

  • Anemone RL, Covert HH (2000) New skeletal remains of Omomys (Primates, Omomyidae): functional morphology of the hindlimb and locomotor behavior of a middle Eocene primate. J Hum Evol 38:300–328

    Google Scholar 

  • Ankel-Simons F, Rasmussen DT (2008) Diurnality, nocturnality, and the evolution of Primate visual systems. Yearb Phys Anthropol 51:100–117

    Google Scholar 

  • Atsalis S (2008) A natural history of the brown mouse lemur. Prentice Hall, New York

    Google Scholar 

  • Barton RA (1998) Visual specialization and brain evolution in primates. Proc R Soc Lond [Biol] 265:1933–1937

    CAS  Google Scholar 

  • Beard KC (1989). Postcranial anatomy, locomotor adaptations, and paleoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). PhD dissertation, Johns Hopkins University School of Medicine, Baltimore

    Google Scholar 

  • Beard KC (1990) Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature 345:340–341

    Google Scholar 

  • Beard KC (1993a) Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: placentals. Springer, New York, pp 129–150

    Google Scholar 

  • Beard KC (1993b) Origin and evolution of gliding in Early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum, New York, pp 63–90

    Google Scholar 

  • Beard KC (1998) East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. In: Beard KC, Dawson MR (eds) Dawn of the age of mammals in Asia. Bulletin of Carnegie Museum of Natural History, vol 34, Carnegie Museum of Natural History, Pittsburgh, PA, pp 5–39

    Google Scholar 

  • Beard KC, Wang J (1995) The first Asian plesiadapoids (Mammalia: Primatomorpha). Ann Carnegie Mus 64:1–33

    Google Scholar 

  • Biknevicius AR (1986) Dental function and diet in the Carpolestidae (Primates, Plesiadapiformes). Am J Phys Anthropol 71:157–171

    CAS  PubMed  Google Scholar 

  • Bloch JI, Boyer DM (2002) Grasping primate origins. Science 298:1606–1610

    CAS  PubMed  Google Scholar 

  • Bloch JI, Boyer DM (2003) Response to comment on “Grasping primate origins”. Science 300:741c

    Google Scholar 

  • Bloch JI, Boyer DM (2007) New skeletons of Paleocene-Eocene Plesiadapiformes: a diversity of arboreal positional behaviors in early primates. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 535–581

    Google Scholar 

  • Bloch JI, Silcox MT (2001) New basicrania of Paleocene-Eocene Ignacius: re-evaluation of the plesiadapiform-dermopteran link. Am J Phys Anthropol 116:184–198

    CAS  PubMed  Google Scholar 

  • Bloch JI, Silcox MT (2006) Cranial anatomy of Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. J Hum Evol 50(1):1–35

    PubMed  Google Scholar 

  • Bloch JI, Boyer DM, Houde P (2003) New skeletons of Paleocene-Eocene micromomyids (Mammalia, Primates): functional morphology and implications for euarchontan relationships. J Vertebr Paleontol 23(Suppl 3):35A

    Google Scholar 

  • Bloch JI, Silcox MT, Boyer DM, Sargis EJ (2007) New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proc Natl Acad Sci U S A 104:1159–1164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bock WJ (1977) Adaptation and the comparative method. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum, New York, pp 57–82

    Google Scholar 

  • Bock WJ, von Wahlert G (1965) Adaptation and the form-function complex. Evolution 19:269–299

    Google Scholar 

  • Boyer DM (2007) A test of the visual predation hypothesis of euprimate origins using diet-correlated measures of tooth shape. J Vertebr Paleontol 27(Suppl 3):51A

    Google Scholar 

  • Boyer DM (2009) New cranial and postcranial remains of Late Paleocene Plesiadapidae (“Plesiadapiformes”, Mammalia) from North America and Europe: description and evolutionary implications. PhD dissertation, Stony Brook University, Stony Brook

    Google Scholar 

  • Boyer DM, Bloch JI (2008) Evaluating the mitten-gliding hypothesis for Paromomyidae and Micromomyidae (Mammalia, “Plesiadapiformes”) using comparative functional morphology of new Paleogene skeletons. In: Sargis EJ, Dagosto M (eds) Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht, pp 233–284

    Google Scholar 

  • Boyer DM, Bloch JI, Silcox MT, Gingerich PD (2004) New observations on the anatomy of Nannodectes (Mammalia, Primates) from the Paleocene of Montana and Colorado. J Vertebr Paleontol 24(Suppl 3):40A

    Google Scholar 

  • Boyer DM, Scott CS, Fox RC (2012) New craniodental material of Pronothodectes gaoi Fox (Mammalia, “Plesiadapiformes”) and relationships among members of Plesiadapidae. Am J phys Anthropol 147:511–550

    PubMed  Google Scholar 

  • Cartmill M (1970) The orbits of arboreal mammals: a reassessment of the arboreal theory of primate evolution. PhD dissertation, University of Chicago, Chicago

    Google Scholar 

  • Cartmill M (1972) Arboreal adaptations and the origin of the order Primates. In: Tuttle R (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 97–122

    Google Scholar 

  • Cartmill M (1974) Rethinking primate origins. Science 184:436–443

    CAS  PubMed  Google Scholar 

  • Cartmill M (1992) New views on primate origins. Evol Anthropol 1:105–111

    Google Scholar 

  • Cartmill M (1993) A view to a death in the morning: hunting and nature through history. Harvard University Press, Cambridge

    Google Scholar 

  • Cartmill M (2012) Primate origins, human origins, and the end of higher taxa. Evol Anthropol 21:208–220

    PubMed  Google Scholar 

  • Changizi MA, Shimojo S (2008) “X-ray vision” and the evolution of forward-facing eyes. J Theor Biol 254:756–767

    PubMed  Google Scholar 

  • Chester SGB, Bloch JI, Sargis E, Silcox MT, Williamson TE (2011) Arboreality in palaechthonid plesiadapiforms (Mammalia, Primates): new evidence from a partial skeleton of early Paleocene Torrejonia wilsoni. J Vertebr Paleontol 31(Suppl 2):87A, Program and Abstracts, Chester et al. 2011

    Google Scholar 

  • Chester SGB, Bloch JI, Clemens WA (2012) Tarsal morphology of the oldest plesiadapiform Purgatorius indicates arboreality in the earliest primates. J Vertebr Paleontol 32(Suppl 1):77, Program and Abstracts

    Google Scholar 

  • Clemens WA (2004) Purgatorius (Plesiadapiformes, Primates?, Mammalia), a Paleocene immigrant into Northeastern Montana: stratigraphic occurrences and incisor proportions. Bull Carneg Mus Nat Hist 36:3–13

    Google Scholar 

  • Clemens WA, Wilson GP (2012) Pattern of immigration of purgatoriids and other eutherians into the Northern North America interior. J Vertebr Paleontol 32(Suppl 1):80, Program and Abstracts

    Google Scholar 

  • Crompton RH (1995) “Visual predation,” habitat structure, and the ancestral primate niche. In: Alterman L, Doyle GA, Izard MK (eds) Creatures of the dark: the nocturnal prosimians. Plenum, New York, pp 11–30

    Google Scholar 

  • Crompton RH, Sellers WI (2007) A consideration of leaping locomotion as a means of predator avoidance in prosimian primates. In: Gursky S, Nekaris K (eds) Primate anti-predator strategies. Springer, Berlin, pp 127–145

    Google Scholar 

  • Crompton RH, Sellers WI, Gunther MM (1993) Energetic efficiency and ecology as selective factors in the saltatory adaptation of prosimian primates. Proc R Soc Lond [Biol] 254:41–45

    CAS  Google Scholar 

  • Dagosto M (1988) Implications of postcranial evidence for the origin of euprimates. J Hum Evol 17:35–56

    Google Scholar 

  • Dagosto M (2007) The postcranial morphotype of Primates. In: Ravosa MJ, Dagosto M (eds) Primate Origins: adaptation and evolution. Springer, Chicago, pp 489–534

    Google Scholar 

  • De Queiroz K, Gauthier J (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Zool 39:307–322

    Google Scholar 

  • Ducrocq S, Buffetaut E, Buffetaut-Tong H, Jaeger J-J, Jongkanjanasoontorn Y, Suteethorn Y (1992) First fossil flying lemur: a dermopteran from the Late Eocene of Thailand. Palaeontology 35:373–380

    Google Scholar 

  • Fox RC (1991) Saxonella (Plesiadapiformes: ?Primates) in North America: S. naylori, sp. nov., from the late Paleocene of Alberta, Canada. J Vertebr Paleontol 11:334–349

    Google Scholar 

  • Fox RC, Scott CS (2011) A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada. J Paleontol 85:537–548

    Google Scholar 

  • Franzen JL, Wilde V (2003) First gut content of a fossil primate. J Hum Evol 44:373–378

    PubMed  Google Scholar 

  • Fu J-F, Wang J-W, Tong Y-S (2002) The new discovery of the Plesiadapiformes from the early Eocene of Wutu Basin, Shandong Province. Vertebr Pal Asiat 40:219–227

    Google Scholar 

  • Gebo DL (2009) A response to Sargis et al. (2007). J Hum Evol 57:810–814

    PubMed  Google Scholar 

  • Gebo DL, Smith T, Dagosto M (2012) New postcranial elements for the earliest Eocene fossil primate Teilhardina belgica. J Hum Evol 63:205–218

    Google Scholar 

  • Gheerbrant E, Sudre J, Sen S, Abrial C, Marandat B, Sigé B, Vianey-Liaud M (1998) Nouvelles données sur les mammifères du Thanetien et de l’Ypresien du Bassin d’Ouarzazate (Maroc) et leur contexte stratigraphique. Palaeovertebrata 27:155–202

    Google Scholar 

  • Gidley JW (1923) Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates. Proc US Natl Mus 63:1–38

    Google Scholar 

  • Gingerich PD (1976) Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Univ Mich Pap Palaeontol 15:1–141

    Google Scholar 

  • Gingerich PD, Gunnell GF (1992) A new skeleton of Plesiadapis cookei. Display Case 6:1–2

    Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation – a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27:1–524

    Google Scholar 

  • Gunnell GF, Morgan ME, Maas MC, Gingerich PD (1995) Comparative paleoecology of Paleogene and Neogene mammalian faunas: trophic structure and composition. Palaeogeogr Palaeoclimatol Palaeoecol 115:265–286

    Google Scholar 

  • Hamrick MW, Rosenman BA, Brush JA (1999) Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): the evidence for gliding behavior reconsidered. Am J Phys Anthropol 109:397–413

    CAS  PubMed  Google Scholar 

  • Heesy C, Ross C (2004) The nocturnal origin of the Order Primates. J Vertebr Paleontol 24(Suppl 3):69A

    Google Scholar 

  • Henke W, Tattersall I (2007) Preface to volume 2. In: Henke W, Tatterall I (eds) Handbook of Palaeoanthropology, vol 2, Primate evolution and human origins. Springer, New York, pp xi–xiv

    Google Scholar 

  • Hoffstetter R (1977) Phylogénie des primates. Bull Mém Soc Anthropol Paris t4(XIII):327–346

    Google Scholar 

  • Hooker JJ (2001) Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132:501–529

    Google Scholar 

  • Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ (2007) Molecular and genomic data identify the closest living relative of primates. Science 318:792–794

    PubMed  Google Scholar 

  • Johnston PA, Fox RC (1984) Paleocene and late Cretaceous mammals from Saskatchewan, Canada. Palaeontogr Abt A 186:163–222

    Google Scholar 

  • Kay RF (2003) The primate fossil record. Am J Hum Biol 15:839–840

    Google Scholar 

  • Kay RF, Cartmill M (1977) Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species. J Hum Evol 6:19–53

    Google Scholar 

  • Kay RF, Thorington RW Jr, Houde P (1990) Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345:342–344

    Google Scholar 

  • Kay RF, Thewissen JGM, Yoder AD (1992) Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. Am J Phys Anthropol 89:477–498

    Google Scholar 

  • Kirk EC (2006) Visual influences on primate encephalization. J Hum Evol 51:76–90

    PubMed  Google Scholar 

  • Kirk EC, Cartmill M, Kay RF, Lemelin P (2003) Comment on “Grasping Primate Origins”. Science 300:741

    CAS  PubMed  Google Scholar 

  • Kirk EC, Lemelin P, Hamrick MW, Boyer DM, Bloch JI (2008) Intrinsic hand proportions of euarchontans and other mammals: implications for locomotor behavior of plesiadapiforms. J Hum Evol 55:278–299

    PubMed  Google Scholar 

  • Krause DW (1991) Were paromomyids gliders? Maybe, maybe not. J Hum Evol 21:177–188

    Google Scholar 

  • Le Gros Clark WE (1959) The antecedents of man. Quadrangle Books, Chicago

    Google Scholar 

  • Lewin R (1987) Bones of contention. Simon and Schuster, New York

    Google Scholar 

  • Liu F-GR, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, Gugel KF (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789

    CAS  PubMed  Google Scholar 

  • Liu L, Yu L, Pearl DK, Edwards SV (2009) Estimating species phylogenies using coalescence times among species. Syst Biol 58:468–477

    CAS  PubMed  Google Scholar 

  • Lofgren DL (1995) The bug creek problem and the Cretaceous-Tertiary boundary at McGuire Creek, Montana. Univ Calif Publ Geol Sci 140:1–185

    Google Scholar 

  • MacPhee RDE, Cartmill M, Gingerich PD (1983) New Paleogene primate basicrania and the definition of the order Primates. Nature 301:509–511

    CAS  PubMed  Google Scholar 

  • Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103

    Google Scholar 

  • Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610–614

    CAS  PubMed  Google Scholar 

  • Marivaux L, Bocat L, Chaimanee Y, Jaeger J-J, Marandat B, Srisuk P, Tafforeau P, Yamee C, Welcomme J-L (2006) Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications. Zool Scr 35:395–420

    Google Scholar 

  • Martin RD (1968) Towards a new definition of Primates. Man 3:377–401

    Google Scholar 

  • Martin RD (1986) Primates: a definition. In: Wood B, Martin L, Andrews P (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 1–31

    Google Scholar 

  • Martin RD (1990) Primate origins and evolution: a phylogenetic reconstruction. Princeton University Press, Princeton

    Google Scholar 

  • Martin RM (2004) Chinese lantern for early primates. Nature 427:22–23

    CAS  PubMed  Google Scholar 

  • Matthew WD, Granger W (1921) New genera of Paleocene mammals. Am Mus Novit 13:1–7

    Google Scholar 

  • McHenry HM, Coffing K (2000) Australopithecus to Homo: transformations in body and mind. Annu Rev Anthropol 29:125–146

    Google Scholar 

  • McKenna MC (1966) Paleontology and the origin of the Primates. Folia Primatol 4:1–25

    CAS  PubMed  Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • St. Mivart G (1873) On Lepilemur and Cheirogaleus, and on the zoological rank of the Lemuroidea. Proc Zool Soc Lond 484–510

    Google Scholar 

  • Miyamoto MM, Porter CA, Goodman M (2000) c-Myc gene sequences and the phylogeny of bats and other eutherian mammals. Syst Biol 49:501–514

    CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling EC, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    CAS  PubMed  Google Scholar 

  • Napier JR, Napier PH (1967) A handbook of living primates. Academic, London

    Google Scholar 

  • Ni X, Wang Y, Hu Y, Li C (2004) A euprimate skull from the early Eocene of China. Nature 427:65–68

    CAS  PubMed  Google Scholar 

  • Ni X, Meng J, Beard KC, Gebo DL, Wang Y, Li C (2010) A new tarkadectine primate from the Eocene of Inner Mongolia, China: phylogenetic and biogeographic implications. Proc R Soc Lond [Biol] 277:247–256

    Google Scholar 

  • Ni X, Gebo DL, Dagosto M, Meng J, Tafforeau P, Flynn JJ, Beard KC (2013) The oldest known primate skeleton and early Haplorhine evolution. Nature 498:60–64

    CAS  PubMed  Google Scholar 

  • Nie W, Fu B, O’Brien PCM, Wang J, Su W, Tanomtong A, Volobouev V, Ferguson-Smith MA, Yang F (2008) Flying lemurs – The ‘flying tree shrews’? Molecular cytogenetic evidence for Scandentia-Dermoptera sister clade. BMC Biol 6:18. doi:10.1186/1741-7007-6-18

    PubMed Central  PubMed  Google Scholar 

  • Niemitz C (1979) Outline of the behavior of Tarsius bancanus. In: Doyle GA, Martin RD (eds) The study of prosimian behavior. Academic, New York, pp 631–660

    Google Scholar 

  • Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356:121–125

    CAS  PubMed  Google Scholar 

  • O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662–667

    PubMed  Google Scholar 

  • Olson LE, Sargis EJ, Martin RD (2004) Phylogenetic relationships among treeshrews (Scandentia): a review and critique of the morphological evidence. J Mamm Evol 11:49–71

    Google Scholar 

  • Olson LE, Sargis EJ, Martin RD (2005) Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 35:656–673

    CAS  PubMed  Google Scholar 

  • Pumo DE, Finamore PS, Franek WR, Phillips CJ, Tarzami S, Balzarano D (1998) Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis and a new hypothesis of the relationships of bats to other eutherian mammals. J Mol Evol 47:709–717

    CAS  PubMed  Google Scholar 

  • Rasmussen DT (1990) Primate origins: lessons from a neotropical marsupial. Am J Primatol 22:263–277

    Google Scholar 

  • Rasmussen DT, Sussman RW (2007) Parallelisms among primates and possums. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 775–803

    Google Scholar 

  • Roberts TE, Lanier HC, Sargis EJ, Olson LE (2011) Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. Mol Phylogenet Evol 60:358–372

    PubMed  Google Scholar 

  • Rose KD (1981) The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ Mich Mus Pap Paleontol 26:1–197

    Google Scholar 

  • Rose KD (1995) The earliest primates. Evol Anthropol 3:159–173

    Google Scholar 

  • Rose KD, Walker AC (1985) The skeleton of early Eocene Cantius, oldest lemuriform primate. Am J Phys Anthropol 66:73–89

    CAS  PubMed  Google Scholar 

  • Rowe T (1987) Definition and diagnosis in the phylogenetic system. Syst Zool 36:208–211

    Google Scholar 

  • Runestad JA, Ruff CB (1995) Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. Am J Phys Anthropol 98:101–119

    CAS  PubMed  Google Scholar 

  • Russell DE (1964) Les mammifères Paléocène d’Europe. Mém Mus Hist nat nouvelle série 13:1–324

    Google Scholar 

  • Sargis EJ (2001a) A preliminary qualitative analysis of the axial skeleton of Tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. J Zool Lond 253:473–483

    Google Scholar 

  • Sargis EJ (2001b) The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). J Zool Lond 253:485–490

    Google Scholar 

  • Sargis EJ (2002a) Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253:10–42

    PubMed  Google Scholar 

  • Sargis EJ (2002b) Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 254:149–185

    PubMed  Google Scholar 

  • Sargis EJ (2002c) A multivariate analysis of the postcranium of tree shrews (Scandentia, Tupaiidae) and its taxonomic implications. Mammalia 66:579–598

    Google Scholar 

  • Sargis EJ (2002d) The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae): an analysis of primatomorphan and volitantian characters. J Mamm Evol 9:137–160

    Google Scholar 

  • Sargis EJ (2002e) Primate origins nailed. Science 298:1564–1565

    CAS  PubMed  Google Scholar 

  • Sargis EJ (2004) New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evol Anthropol 13:56–66

    Google Scholar 

  • Sargis EJ (2007) The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae) and its implications for primate supraordinal relationships. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 51–82

    Google Scholar 

  • Sargis EJ, Boyer DM, Bloch JI, Silcox MT (2007) Evolution of pedal grasping in Primates. J Hum Evol 53:103–107

    PubMed  Google Scholar 

  • Sigé B, Jaeger J-J, Sudre J, Vianey-Liaud M (1990) Altiatlasius koulchii n. gen et sp., primate omomyidé du paléocène supérieur du Maroc, et les origines des euprimates. Palaeontographica 212:1–24

    Google Scholar 

  • Silcox MT (2001) A phylogenetic analysis of Plesiadapiformes and their relationship to Euprimates and other archontans. PhD dissertation, Johns Hopkins School of Medicine, Baltimore

    Google Scholar 

  • Silcox MT (2003) New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. J Hum Evol 44:73–86

    PubMed  Google Scholar 

  • Silcox MT (2007) Primate taxonomy, plesiadapiforms, and approaches to primate origins. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 143–178

    Google Scholar 

  • Silcox MT (2008) The Biogeographic origins of Primates and Euprimates: East, West, North, or South of Eden? In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht, pp 199–231

    Google Scholar 

  • Silcox MT, Gunnell GF (2008) Plesiadapiformes. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of Tertiary mammals of North America vol 2: marine mammals and smaller terrestrial mammals. Cambridge University Press, Cambridge, pp 207–238

    Google Scholar 

  • Silcox MT, Bloch JI, Sargis EJ, Boyer DM (2005) Euarchonta (Dermoptera, Scandentia, Primates). In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Silcox MT, Bloch JI, Boyer DM, Godinot M, Ryan TM, Spoor F, Walker A (2009a) Semicircular canal system in early primates. J Hum Evol 56:315–327

    PubMed  Google Scholar 

  • Silcox MT, Dalmyn CK, Bloch JI (2009b) Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early Primates. Proc Natl Acad Sci USA 106:10987–10992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silcox MT, Benham AE, Bloch JI (2010a) Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates. J Hum Evol 58:505–521

    PubMed  Google Scholar 

  • Silcox MT, Bloch JI, Boyer DM, Houde P (2010b) Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria) and the relationships of the Apatemyidae to other mammals. Zool J Linn Soc 160:773–825

    Google Scholar 

  • Silcox MT, Dalmyn CK, Hrenchuk A, Bloch JI, Boyer DM, Houde P (2011) Endocranial morphology of Labidolemur kayi (Apatemyidae, Apatotheria) and its relevance to the study of brain evolution in Euarchontoglires. J Vertebr Paleontol 31:1314–1325

    Google Scholar 

  • Smith T, Van Itterbeeck J, Missiaen P (2004) Oldest Plesiadapiform (Mammalia, Proprimates) from Asia and its palaeobiogeographical implications for faunal interchange with North America. C R Palevol 3:43–52

    Google Scholar 

  • Springer MS, de Jong WW (2001) Which mammalian supertree to bark up? Science 291:1709–1711

    CAS  PubMed  Google Scholar 

  • Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci U S A 100:1056–1061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19:430–438

    PubMed  Google Scholar 

  • Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janeĉka JE, Fisher CA, Murphy WJ (2012) Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoSOne 7:e49521

    CAS  Google Scholar 

  • Stafford BJ, Thorington RW Jr (1998) Carpal development and morphology in archontan mammals. J Morphol 235:135–155

    CAS  PubMed  Google Scholar 

  • Storch G, Richter G (1994) Zur Paläobiologie Messeler Igel. Natur u Museum 124:81–90

    Google Scholar 

  • Sussman RW (1991) Primate origins and the evolution of angiosperms. Am J Primatol 23:209–223

    Google Scholar 

  • Sussman RW, Raven RH (1978) Pollination of flowering plants by lemurs and marsupials: a surviving archaic coevolutionary system. Science 200:731–736

    CAS  PubMed  Google Scholar 

  • Sussman RW, Rasmussen DT, Raven PH (2013) Rethinking primate origins again. Am J Primatol 75:95–106

    PubMed  Google Scholar 

  • Szalay FS (1968) The beginnings of primates. Evolution 22:19–36

    Google Scholar 

  • Szalay FS (1969) Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull Am Mus Nat Hist 140:195–330

    Google Scholar 

  • Szalay FS (1972) Paleobiology of the earliest primates. In: Tuttle RH (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 3–35

    Google Scholar 

  • Szalay FS (1975) Where to draw the nonprimate-primate taxonomic boundary. Folia Primatol 23:158–163

    CAS  PubMed  Google Scholar 

  • Szalay FS (1981) Phylogeny and the problem of adaptive significance: the case of the earliest primates. Folia Primatol 36:157–182

    CAS  PubMed  Google Scholar 

  • Szalay FS, Dagosto M (1980) Locomotor adaptations as reflected on the humerus of Paleogene Primates. Folia Primatol 34:1–45

    CAS  PubMed  Google Scholar 

  • Szalay FS, Dagosto M (1988) Evolution of hallucial grasping in primates. J Hum Evol 17:1–33

    Google Scholar 

  • Szalay FS, Decker RL (1974) Origins, evolution, and function of the tarsus in late Cretaceous Eutheria and Paleocene primates. In: Jenkins FA Jr (ed) Primate locomotion. Academic, New York, pp 223–359

    Google Scholar 

  • Szalay FS, Delson E (1979) Evolutionary history of the primates. Academic, New York

    Google Scholar 

  • Szalay FS, Drawhorn G (1980) Evolution and diversification of the Archonta in an arboreal milieu. In: Luckett WP (ed) Comparative biology and evolutionary relationships of tree shrews. Plenum, New York, pp 133–169

    Google Scholar 

  • Szalay FS, Lucas SG (1993) Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum, New York, pp 187–226

    Google Scholar 

  • Szalay FS, Lucas SG (1996) The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bull New Mex Mus Nat Hist Sci 7:1–47

    Google Scholar 

  • Szalay FS, Tattersall I, Decker RL (1975) Phylogenetic relationships of Plesiadapis: postcranial evidence. In: Szalay FS (ed) Approaches to primate paleobiology. Karger, Basel, pp 136–166

    Google Scholar 

  • Szalay FS, Rosenberger AL, Dagosto M (1987) Diagnosis and differentiation of the order Primates. Yearb Phys Anthropol 30:75–105

    Google Scholar 

  • Tabuce R, Mahboubi M, Tafforeau P, Sudre J (2004) Discovery of a highly-specialized plesiadapiform primate in the early-middle Eocene of Northwestern Africa. J Hum Evol 47:305–321

    PubMed  Google Scholar 

  • Tabuce R, Marivaux L, Lebrun R, Adaci M, Bensalah M, Fabre PH, Fara E, Gomes Rodrigues H, Hautier L, Jaeger JJ, Lazzari V, Mebrouk F, Peigné S, Sudre J, Tafforeau P, Valentin X, Mahboubi M (2009) Anthropoid versus Strepsirhine status of the African Eocene primates Algeripithecus and Azibius: craniodental evidence. Proc Biol Sci 276:4087–4094

    PubMed Central  PubMed  Google Scholar 

  • Tong Y (1988) Fossil tree shrews from the Eocene Hetaoyuan formation of Xichuan, Henan. Vertebr Pal Asiat 26:214–220

    Google Scholar 

  • Van Valen LM (1994) The origin of the plesiadapid primates and the nature of Purgatorius. Evol Monogr 15:1–79

    Google Scholar 

  • Van Valen LM, Sloan RE (1965) The earliest primates. Science 150:743–745

    PubMed  Google Scholar 

  • Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48:1–5

    CAS  PubMed  Google Scholar 

  • Wible JR (1993) Cranial circulation and relationships of the Colugo Cynocephalus (Dermoptera, Mammalia). Am Mus Novit 3072:1–27

    Google Scholar 

  • Wible JR, Covert HH (1987) Primates: cladistic diagnosis and relationships. J Hum Evol 16:1–22

    Google Scholar 

  • Wible JR, Martin JR (1993) Ontogeny of the tympanic floor and roof in archontans. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum, New York, pp 111–146

    Google Scholar 

  • Yapuncich G, Boyer D, Secord R, Bloch JI (2011) The first dentally associated skeleton of Plagiomenidae (Mammalia,? Dermoptera) from the Late Paleocene of Wyoming. J Vertebr Paleontol 31(Suppl 2):218, Program and Abstracts

    Google Scholar 

Download references

Acknowledgments

Our thanks to JG Fleagle, SGB Chester, PD Gingerich, KD Rose, FS Szalay, and AC Walker for conversations relevant to this chapter. We thank Annette Zitzmann for providing the photo of Ptilocercus in Fig. 11. Research was funded by grants from Wenner Gren, the Paleobiological Fund, Sigma Xi, NSF (SBR-9815884), the University of Winnipeg, and NSERC to MTS; NSF (BCS-0129601) to G.F. Gunnell, P.D. Gingerich, and JIB; NSF (SBR-9616194), Field Museum of Natural History, Sigma Xi, and the Yale University Social Science Faculty Research Fund to EJS; 2002 NSFGRF, NSF DDIG (BCS-0622544), a Leakey Foundation Grant, and NSF (BCS-1317525) to DMB. A portion of this updated manuscript was written when JIB was supported as an Edward P. Bass Distinguished Visiting Environmental Scholar in the Yale Institute for Biospheric Studies (YIBS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary T. Silcox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Silcox, M.T., Sargis, E.J., Bloch, J.I., Boyer, D.M. (2013). Morphological Evidence for Primate Origins and Supraordinal Relationships. In: Henke, W., Tattersall, I. (eds) Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27800-6_29-5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27800-6_29-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27800-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics