Skip to main content

Effects on Tracheal Cells and Bronchial Mucus Secretion

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 603 Accesses

Abstract

Mucus secretion has been studied in isolated tracheas from ferrets and dogs (Borson et al. 1980; Kyle et al. 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

In Vitro Studies of Mucus Secretion

  • Borson DB, Chinn RA, Davis B, Nadel JA (1980) Adrenergic and cholinergic nerves mediate fluid secretion from tracheal glands of ferrets. J Appl Physiol Respir Environ Exerc Physiol 49:1027–1031

    CAS  PubMed  Google Scholar 

  • Kyle H, Robinson NP, Widdicombe JG (1987) Mucus secretion by tracheas of ferret and dog. Eur J Respir Dis 70:14–22

    CAS  PubMed  Google Scholar 

  • Quinton PM (1979) Composition and control of secretions from tracheal bronchial submucosal glands. Nature 279:551–552

    Article  CAS  PubMed  Google Scholar 

  • Robinson N, Widdicombe JG, Xie CC (1983a) In vitro collection of mucus from the ferret trachea. J Phys 340:7P–8P

    Google Scholar 

  • Robinson N, Widdicombe JG, Xie CC (1983b) In vitro measurement of submucosal gland secretion in the ferret trachea by observation of tantalum dust-coated “hillocks”. J Phys 340:8P

    Google Scholar 

  • Widdicombe JG (1988a) Methods for collecting and measuring mucus from specific sources. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven, New York, pp 21–29

    Google Scholar 

Acute Studies of Mucus Secretion

  • Braga PC (1988) Methods for collecting and measuring airway mucus in animals. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven Press, New York, pp 3–11

    Google Scholar 

  • Davis B, Chinn R, Gold J, Popovac D, Widdicombe JG, Nadel JA (1982) Hypoxemia reflexly increases secretion from tracheal submucosal glands in dogs. J Appl Physiol Resp Environ Exerc Physiol 52:1416–1419

    CAS  Google Scholar 

  • Engler H, Szelenyi I (1984) Tracheal phenol red secretion, a new method for screening mucosecretolytic compounds. J Pharmacol Methods 11:151–157

    Article  CAS  PubMed  Google Scholar 

  • Gallagher JT, Kent PW, Passatore M, Phipps RJ, Richardson PS (1975) The composition of tracheal mucus and the nervous control of its secretion in the cat. Proc R Soc Lond 192:49–76

    Article  CAS  PubMed  Google Scholar 

  • Graziani G, Cazzulani P (1981) Su un metodo particolarmente indicato per lo studio dell’attivita espettorante nei piccoli animali. Farmaco/Ed Pr 36:167–172

    CAS  Google Scholar 

  • Johnson HG, McNee ML (1983) Secretagogue responses of leukotriene C4, D 4: comparison of potency in canine trachea in vivo. Prostaglandins 25:237–243

    Article  CAS  PubMed  Google Scholar 

  • Johnson HG, McNee ML (1985) Adenosine-induced secretion in the canine trachea: modification by methylxanthines and adenosine derivatives. Br J Pharmacol 86:63–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leikauf GD, Ueki IF, Nadel JA (1984) Autonomic regulation of viscoelasticity of cat tracheal gland secretions. J Appl Physiol Respir Environ Exerc Physiol 56:426–430

    CAS  PubMed  Google Scholar 

  • Perry WF, Boyd EM (1941) A method for studying expectorant action in animals by direct measurement of the output of respiratory tract fluids. J Pharmacol Exp Ther 73:65–77

    CAS  Google Scholar 

  • Proctor DF, Aharonson EF, Reasor MJ, Bucklen KR (1973) A method for collecting normal respiratory mucus. Bull Physiopathol Respir 9:351–358

    CAS  Google Scholar 

  • Quevauviller A, Ngoc-Huyen V (1966) Hypersecretion expérimentale du mucus bronchique chez le rat. I. Methode de appreciation anatomopathologique. C R Soc Biol 160:1845–1849

    CAS  Google Scholar 

  • Ueki I, German V, Nadel J (1980a) Direct measurement of tracheal mucus gland secretion with micropipettes in cats. Effects of cholinergic and α-adrenergic stimulation. Clin Res 27:59A

    Google Scholar 

  • Ueki I, German VF, Nadel JA (1980b) Micropipette measurement of airway submucosal gland secretion. Autonomic effects. Am Rev Respir Dis 121:351–357

    CAS  PubMed  Google Scholar 

Studies of Mucus Secretion With Chronic Cannulation

  • Barber WH, Smal PA Jr (1974) Construction of an improved tracheal pouch in the ferret. Am Rev Respir Dis 115:165–169

    Google Scholar 

  • Braga PC (1988) Dynamic methods in viscoelasticity assessment. Sinusoidal oscillation method. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven Press, New York, pp 63–71

    Google Scholar 

  • Kim CS, Berkley BB, Abraham WM, Wanner A (1982) A micro double capillary method for rheological measurements of lower airway secretions. Bull Eur Physiopathol Respir 18:915–927

    CAS  PubMed  Google Scholar 

  • King M (1988) Magnetic microrheometer. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven, New York, pp 73–83

    Google Scholar 

  • Lopez-Vidriero MT, Das I, Reid LM (1977) Airway secretion: source, biochemical and rheological properties. In: Brain JD, Proctor DF, Reid LM (eds) Respiratory defense mechanisms. Part I. Marcel Dekker, New York, pp 289–356

    Google Scholar 

  • Majima Y, Hirata K, Takeuchi K, Hattori K, Sakakura Y (1990) Effects of orally administered drugs on dynamic viscoelasticity of human nasal mucus. Am Rev Respir Dis 141:79–83

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Litt M, Marriott C (1980) The effect of mucolytic agents on the rheological and transport properties of canine tracheal mucus. Am Rev Respir Dis 121:495–500

    CAS  PubMed  Google Scholar 

  • Philippoff W, Han CD, Barnett B, Dulfano MJ (1970) A method for determining the viscoelastic properties of biological fluids. Biorheology 7:55–67

    PubMed  Google Scholar 

  • Scuri R, Frova C, Fantini PL, Mondani G, Riboni R, Alfieri C (1980) Un nuovo metodo per lo studio della mucoproduzione nel coniglio. Boll Chim Farm 119:181–187

    CAS  PubMed  Google Scholar 

  • Wardell JR Jr, Chakrin LW, Payne BJ (1970) The canine tracheal pouch. A model for use in respiratory mucus research. Am Rev Respir Dis 101:741–754

    PubMed  Google Scholar 

  • Widdicombe JG (1988b) Methods for collecting and measuring mucus from specific sources. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven, New York, pp 21–29

    Google Scholar 

  • Yankell SL, Marshall R, Kavanagh B, DePalma PD, Resnick B (1970) Tracheal fistula in dogs. J Appl Physiol 28:853–854

    CAS  PubMed  Google Scholar 

Bronchoalveolar Lavage

  • Bassett DJP, Bowen Kelly E, Brewster EL, Elbon CL, Reichenbaugh SS, Bunton T, Kerr JS (1988) A reversible model of acute lung injury based on ozone exposure. Lung 166:355–369

    Article  CAS  PubMed  Google Scholar 

  • Fryer AD, Yarkony KA, Jacoby DB (1994) The effect of leukocyte depletion on pulmonary M2 muscarinic receptor function in parainfluenza virus-infected guinea pigs. Br J Pharmacol 112:588–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fryer AD, Costello RW, Yost BL, Lobb RR, Tedder TF, Steeber DA (1997) Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J Clin Invest 99:2036–2044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gossart S, Cambon C, Orfila C, Séguélas MH, Lepert JC, Rami J, Carré P, Pipy B (1996) Reactive oxygen intermediates as regulators of TNF-α production in rat lung induced by silica. J Immunol 156:1540–1548

    CAS  PubMed  Google Scholar 

  • Myrvik QN, Leake ES, Fariss B (1961) Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to produce them in a high state of purity. J Immunol 86:128–132

    CAS  PubMed  Google Scholar 

  • Wang S, Lantz RC, Rider RD, Chen GJ, Breceda V, Hays AM, Robledo RF, Tollinger BJ, Dinesh SVR, Witten ML (1996) A free radical scavenger (Lazaroid U75412E) attenuates tumor necrosis factor-alpha generation in a rabbit smoke-induced lung injury. Respiration 64:358–363

    Article  Google Scholar 

Ciliary Activity

  • Baldetorp L, Huberman D, Håkanssson CH, Toremalm NG (1976) Effects of ionizing radiation on the activity of the ciliated epithelium of the trachea. Acta Radiol Ther Phys Biol 13:225–232

    Article  Google Scholar 

  • Braga PC, Dall’Oglio G, Bossi R, Allegra L (1986) Simple and precise method for counting ciliary beats directly from the TV monitor screen. J Pharmacol Methods 16:161–169

    Article  CAS  PubMed  Google Scholar 

  • Cheung ATW (1976) High speed cinemicrographic studies on rabbit tracheal (ciliated) epithelia: determination of the beat pattern of tracheal cilia. Pediatr Res 10:140–144

    Article  CAS  PubMed  Google Scholar 

  • Corssen G, Allen CR (1958) A comparison of the toxic effects of various local anesthetic drugs on human ciliated epithelium in vitro. Tex Rep Biol Med 16:194–202

    CAS  PubMed  Google Scholar 

  • Curtis LN, Carson JL (1992) Computer-assisted video measurement of inhibition of ciliary beat frequency of human nasal epithelium in vitro by xylometazoline. J Pharmacol Toxicol Methods 28:1–7

    Article  CAS  PubMed  Google Scholar 

  • Dalhamn T (1956) Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases (SO2, H3N, HCHO). A functional and morphologic (light microscopic and electron microscopic) study, with special reference to technique. Acta Physiol Scand 36(Suppl 123):1–161

    Google Scholar 

  • Dalhamn T (1964) Studies on tracheal ciliary activity. Am Rev Respir Dis 89:870–877

    CAS  PubMed  Google Scholar 

  • Dalhamn T, Rylander R (1962) Frequency of ciliary beat measured with a photo-sensitive cell. Nature 196:592–593

    Article  CAS  PubMed  Google Scholar 

  • Hakansson CH, Toremalm NG (1963) Studies on the physiology of the trachea. I. Ciliary activity indirectly recorded by a new “light beam reflex” method. Ann Otol 74:954–969

    Google Scholar 

  • Hesse H, Kasparek R, Mizera W, Unterholzner C, Konietzko N (1981) Influence of reproterol on ciliary beat frequency of human bronchial epithelium in vitro. Arzneim Forsch/Drug Res 31:716–718

    CAS  Google Scholar 

  • Hybbinette JC, Mercke U (1982a) A method for evaluating the effect of pharmacological substances on mucociliary activity in vivo. Acta Otolaryngol 93:151–159

    Article  CAS  PubMed  Google Scholar 

  • Hybbinette JC, Mercke U (1982b) Effects of the parasympathomimetic drug methacholine and its antagonist atropine on mucociliary activity. Acta Otolaryngol 93:465–473

    Article  CAS  PubMed  Google Scholar 

  • Hybbinette JC, Mercke U (1982c) Effects of sympathomimetic agonists and antagonists on mucociliary activity. Acta Otolaryngol 94:121–130

    Article  CAS  PubMed  Google Scholar 

  • Iravani J (1967) Flimmerbewegung in den intrapulmonalen Luftwegen der Ratte. Pflugers Arch 207:221–237

    Article  Google Scholar 

  • Iravani J (1971) Physiologie und Pathophysiologie der Cilientätigkeit und des Schleimtransports im Tracheobronchialbaum. (Untersuchungen an Ratten). Pneumonologie 144:93–112

    Google Scholar 

  • Iravani J, Melville GN (1975) Mucociliary activity in the respiratory tract as influenced by prostaglandin E1. Respiration 32:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lee WI, Verdugo P (1976) Laser light-scattering spectroscopy. A new application in the study of ciliary activity. Biophys J 16:1115–1119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lierle DM, Moore PM (1935) Further study of the effects of drugs on ciliary activity: a new method of observation in the living animal. Ann Otol 44:671–684

    Google Scholar 

  • Lindberg S, Mercke U (1986) Bradykinin accelerates mucociliary activity in rabbit maxillary sinus. Acta Otolaryngol (Stockh) 101:114–121

    Article  CAS  Google Scholar 

  • Lindberg S, Hybbinette JC, Mercke U (1986) Effects of neuropeptides on mucociliary activity. Ann Otol Rhinol Laryngol 95:94–100

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Vidriero MT, Jacobs M, Clarke SW (1985) The effect of isoprenaline on the ciliary activity of an in vitro preparation of rat trachea. Eur J Pharmacol 112:429–432

    Article  CAS  PubMed  Google Scholar 

  • Manawadu BR, Mostow SR, LaForce FM (1978) Local anesthetics and tracheal ring ciliary activity. Anesth Anal 57:448–452

    Article  CAS  Google Scholar 

  • Maurer DR, Sielczak M, Oliver W Jr, Abraham WM, Wanner A (1982) Role of ciliary motility in acute allergic mucociliary dysfunction. J Appl Physiol 52:1018–1023

    CAS  PubMed  Google Scholar 

  • Mercke U, Håkanson CH, Toremalm NG (1974) A method for standardized studies of mucociliary activity. Acta Otolaryngol 78:118–123

    Article  CAS  PubMed  Google Scholar 

  • Mercke U, Lindbergh S, Dolata J (1987) The role of neurokinin A and calcitonin-related peptide in the mucociliary defense of the rabbit maxillary sinus. Rhinology 25:89–93

    CAS  PubMed  Google Scholar 

  • Rutland J, Cole PJ (1980) Non-invasive sampling of nasal cilia for measurement of beat frequency and study of ultrastructure. Lancet ii:564–565

    Article  Google Scholar 

  • Suzuki N (1966) Motor control of the ciliary activity in the frog’s palate. J Fac Sci, Hokkaido Univ Ser VI 16:67–71

    Google Scholar 

  • Van de Donk HJM, Muller-Platema IP, Zuidema J, Merkus FWHM (1980) The effects of preservatives on the ciliary beat frequency of chicken embryo tracheas. Rhinology 18:119–133

    PubMed  Google Scholar 

  • Verdugo P, Johnson NT, Tam PY (1980) β-adrenergic stimulation of respiratory ciliary activity. J Appl Physiol 48:868–871

    CAS  PubMed  Google Scholar 

Studies of Mucociliary Transport

  • Ahmed T, Januskiewicz AJ, Landa JF, Brown A, Chapman GA, Kenny PJ, Finn RD, Bondick J, Sackner MA (1979) Effect of local radioactivity on tracheal mucous velocity of sheep. Am Rev Respir Dis 120:567–575

    CAS  PubMed  Google Scholar 

  • Battista SP (1971) Agents affecting mucociliary activity. In: Turner RA, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York/London, pp 167–202

    Chapter  Google Scholar 

  • Carson S, Goldhamer R, Carpenter R (1966) Mucus transport in the respiratory tract. Am Rev Respir Dis 93:86–92

    PubMed  Google Scholar 

  • Dalhamn T (1956) Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases (SO2, H3N, HCHO). A functional and morphologic (light microscopic and electron microscopic) study, with special reference to technique. Acta Physiol Scand 36(Suppl 123):1–161

    Google Scholar 

  • Deitmer Th (1989) Physiology and pathology of the mucociliary system. Special regards to mucociliary transport in malignant lesions of the human larynx. Karger Basel, Chapter 5: methods of investigation of mucociliary transport, pp 26–34, Chapter 9: pathophysiology and pharmacology of the mucociliary system, pp 47–54

    Google Scholar 

  • Friedman M, Stott FD, Poole DO, Dougherty R, Chapman GA, Watson H, Sackner MA (1977) A new roentgenographic method for estimating mucus velocity in airways. Am Rev Respir Dis 115:67–72

    CAS  PubMed  Google Scholar 

  • Giordano AM, Shih CK, Holsclaw DS, Khan MA, Litt M (1977) Mucus clearance: in vivo canine tracheal vs. in vitro bullfrog palate studies. J Appl Physiol 42:761–766

    PubMed  Google Scholar 

  • Giordano AM, Holsclaw D, Litt M (1978) Mucus rheology and mucociliary clearance: normal physiologic state. Am Rev Respir Dis 118:245–250

    CAS  PubMed  Google Scholar 

  • Iravani J (1971) Physiologie und Pathophysiologie der Cilientätigkeit und des Schleimtransports im Tracheobronchialbaum. (Untersuchungen an Ratten). Pneumonologie 144:93–112

    Google Scholar 

  • Kensler CJ, Battista SP (1966) Chemical and physical factors affecting mammalian ciliary activity. Am Rev Respir Dis 93:93–102

    CAS  PubMed  Google Scholar 

  • Kochmann M (1930) Zur Pharmakologie der Expektorantien. Wirkung auf die Flimmerbewegung. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 150:23–38

    Article  CAS  Google Scholar 

  • Leitch GJ, Frid LH, Phoenix D (1985) Effects of ethanol on mucociliary clearance. Alcohol Clin Exp Res 9:277–280

    Article  CAS  PubMed  Google Scholar 

  • Sackner MA, Reinhart M, Arkin B (1977) Effects of beclomethasone diproprionate on tracheal mucus velocity. Am Rev Respir Dis 115:1069–1070

    CAS  Google Scholar 

  • Sadé J, Eliezer N, Silberberg A, Nevo AC (1970) The role of mucus in transport by cilia. Am Rev Respir Dis 102:48–52

    PubMed  Google Scholar 

  • Ukai K, Sakakura Y, Saida S (1985) Interaction between mucociliary transport and the ciliary beat of chicken nasal mucosa. Arch Otorhinolaryngol 242:225–231

    Article  CAS  PubMed  Google Scholar 

Culture of Tracheal Epithelial Cells

  • Emura M, Riebe M, Ochiai M, Aufderheide M, Germann P, Mohr U (1990) New functional cell-culture approach to pulmonary carcinogenesis and toxicology. Cancer Res Clin Oncol 116:557–562

    Article  CAS  Google Scholar 

  • Freitag A, Reimann A, Wessler I, Racké K (1996) Effect of bacterial lipopolysaccharides (LPS) and tumor necrosis factor-α (TNF-α) on rat tracheal epithelial cells in culture: morphology, proliferation and induction of nitric oxide (NO) synthase. Pulm Pharmacol 9:149–156

    Article  CAS  PubMed  Google Scholar 

  • Hay DWP, Farmer SG, Goldie GR (1994) Inflammatory mediators and modulation of epithelial/smooth muscle interactions. In: Goldie RG (ed) Handbook of Immunopharmacology: immunopharmacology of epithelial barriers. Academic, London, pp 119–146

    Google Scholar 

  • Hey C, Wessler I, Racké K (1995) Nitric oxide (NO) synthase is inducible in rat, but not in rabbit alveolar macrophages, with a concomitant reduction in arginase activity. Naunyn Schmiedebergs Arch Pharmacol 351:651–659

    Article  CAS  PubMed  Google Scholar 

  • Lechner JF, LaVeck MAA (1985) A serum-free method for culturing normal bronchial cells. J Tissue Cult Methods 9:43–48

    Article  Google Scholar 

  • Webber SE, Corfield DR (1993) The pathophysiology of airway inflammation and mucosal damage in asthma. In: Andrews P, Widdicombe J (eds) Pathophysiology of the Gut and Airways. Portland Press, London, pp 67–77

    Google Scholar 

Alveolar Macrophages

  • Gazin V, Kerdine S, Grillon G, Pallardy M, Raoul H (2004) Uranium induces TNFα secretion and MAPK activation in rat alveolar macrophage cell line. Toxicol Appl Pharmacol 194:49–59

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Helmke RJ, Boyd RL, German VF, Mangos JA (1987) From growth factor dependence to growth factor responsiveness: the genesis of an alveolar macrophage cell line. In Vitro Cell Dev Biol 23:567–574

    Article  CAS  PubMed  Google Scholar 

  • Mörk AC, Helmke RJ, Martinez JR, Michalek MT, Patchen MI, Zhang GH (1998) Effects of particulate and soluble (1–3)-α-glycans on Ca2+ influx in NR8383 alveolar macrophages. Immunopharmacology 40:77–89

    Article  PubMed  Google Scholar 

  • Sirois J, Ménard G, Moses AS, Bissonette EY (2000) Importance of histamine in the cytokine network in the lung through H2 and H3 receptors: stimulation of IL-10 production. J Immunol 164:2964–2970

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Martinez JR, Zhang GH (1999) Inhibition of Ca2+ influx by pentoxifylline in NR8383 alveolar macrophages. Immunopharmacology 43:47–58

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lian X, Cowen A, Xu H, Du H, Yan C (2004) Synergy between signal transducer and activator of transcription 3 and retinoic acid receptor-α in the regulation of the surfactant protein B gene in the lung. Mol Endocrinol 18:1520–1532

    Article  CAS  PubMed  Google Scholar 

  • Zhang GH, Helmke RJ, Mörk AC, Martinez RJ (1997) Regulation of cytosolic free Ca2+ in cultured rat macrophages (NR8383). J Leukoc Biol 62:341–348

    CAS  PubMed  Google Scholar 

  • Zhu X, Birnbaumer L (1998) Calcium channels formed by mammalian Trp homologues. News Physiol Sci 13:211–217

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy D. Bruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bruse, K.D. (2015). Effects on Tracheal Cells and Bronchial Mucus Secretion. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics