Skip to main content

Effects of Adenosine Receptors

Drug Discovery and Evaluation: Pharmacological Assays

Abstract

Adenosine, a purine nucleoside catabolite of ATP, regulates numerous effects in mammalian organ systems. The discovery by Drury and Szent-György (1929) that adenosine can affect several bodily functions inspired much research interest. Regulatory functions of adenosine are especially important when cellular energy supply fails to meet the demand. Adenosine is omnipresent; it is released by nearly all cells and is continuously formed intracellularly as well as extracellularly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

Adenosine A1 Receptor Binding

  • Ahlijanian MK, Takemori AE (1985) Effects of (–)-N6-R-phenylisopropyladenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur J Pharmacol 112:171–179

    CAS  PubMed  Google Scholar 

  • Arch JR, Newsholme EA (1978) The control of the metabolism and the hormonal role of adenosine. Essays Biochem 14:82–123

    CAS  PubMed  Google Scholar 

  • Avila MY, Stone RA, Civan MM (2002) Knockout of A3 adenosine receptors reduces mouse intraocular pressure. Invest Ophthalmol Vis Sci 43:3021–3026

    PubMed  Google Scholar 

  • Baxter GF (2002) Role of adenosine in delayed preconditioning of myocardium. Cardiovasc Res 55(3):483–494

    Google Scholar 

  • Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67(1):74–102

    Google Scholar 

  • Brackett LE, Daly JW (1994) Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol 47(5):801–814

    Google Scholar 

  • Broch OJ, Ueland PM (1980) Regional and subcellular distribution of S-adenosylhomocysteine hydrolase in the adult rat brain. J Neurochem 35(2):484–488

    CAS  PubMed  Google Scholar 

  • Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: binding of N6-cyclohexyl [3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci 77:5547–5551

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    Google Scholar 

  • Burgdorf C, Richardt D, Kurz T, Seyfarth M, Jain D, Katus HA, Richardt G (2001) Adenosine inhibits norepinephrine release in the postischemic rat heart: the mechanism of neuronal stunning. Cardiovasc Res 49(4):713–720

    CAS  PubMed  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  • Burnstock G (2001) Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci 22:182–188

    CAS  PubMed  Google Scholar 

  • Burnstock G, Ralevic V (2013) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66(1):102–192

    PubMed  Google Scholar 

  • Chen JF, Lee CF, Chern Y (2014) Adenosine receptor neurobiology: overview. Int Rev Neurobiol 119:1–49

    Google Scholar 

  • Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103(3):203–215

    CAS  PubMed  Google Scholar 

  • Collis MG (1983) Evidence for an A1-adenosine receptor in the guinea-pig atrium. Br J Pharmacol 78(1):207–212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costanzi S, Mamedova L, Gao ZG, Jacobson KA (2004) Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis and homology modelling. J Med Chem 47:5393–5404

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25:197–207

    CAS  PubMed  Google Scholar 

  • de Lera Ruiz M, Lim YH, Zheng J (2014) Adenosine A2A receptor as a drug discovery target. J Med Chem 57(9):3623–3650

    Google Scholar 

  • Delaney SM, Geiger JD (1998) Levels of endogenous adenosine in rat striatum. II. Regulation of basal and N-methyl-d-aspartate-induced levels by inhibitors of adenosine transport and metabolism. J Pharmacol Exp Ther 285(2):568–572

    CAS  PubMed  Google Scholar 

  • Delaney SM, Shepel PN, Geiger JD (1998) Levels of endogenous adenosine in rat striatum. I. Regulation by ionotropic glutamate receptors, nitric oxide and free radicals. J Pharmacol Exp Ther 285(2):561–567

    CAS  PubMed  Google Scholar 

  • Dobson JG Jr (1983) Adenosine reduces catecholamine contractile responses in oxygenated and hypoxic atria. Am J Physiol 245(3):H468–H474

    CAS  PubMed  Google Scholar 

  • Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68(3):213–237

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fenton RA, Dobson JG Jr (2007) Adenosine A1 and A2A receptor effects on G-protein cycling in beta-adrenergic stimulated ventricular membranes. J Cell Physiol 213(3):785–792

    CAS  PubMed  Google Scholar 

  • Fenton RA, Shea LG, Doddi C, Dobson JG Jr (2010) Myocardial adenosine A(1)-receptor-mediated adenoprotection involves phospholipase C, PKC-epsilon, and p38 MAPK, but not HSP27. Am J Physiol Heart Circ Physiol 298(6):H1671–H1678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feoktistov I, Biaggioni I (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96(4):1979–1986

    Google Scholar 

  • Fredholm BB, Jonzon B, Lindgren E, Lindström K (1982) Adenosine receptors mediating cyclic AMP production in the rat hippocampus. J Neurochem 39:165–175

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):364–374

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors–an update. Pharmacol Rev 63(1):1–34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fredholm BB. (2014) Adenosine–a physiological or pathophysiological agent? J Mol Med (Berl). 92(3):201–6.

    CAS  PubMed  Google Scholar 

  • Hamilton HW, Taylor MD, Steffen RP, Haleen SJ, Bruns RF (1987) Correlation of adenosine receptor affinities and cardiovascular activity. Life Sci 41:2295–2302

    CAS  PubMed  Google Scholar 

  • Harms HH, Wardeh G, Mulder AH (1979) Effects of adenosine on depolarization-induced release of various radiolabelled neurotransmitters from slices of rat corpus striatum. Neuropharmacology 18:577–580

    CAS  PubMed  Google Scholar 

  • Headrick JP, Peart JN, Reichelt ME, Haseler LJ (2011) Adenosine and its receptors in the heart: regulation, retaliation and adaptation. Biochim Biophys Acta 1808(5):1413–1428

    CAS  PubMed  Google Scholar 

  • Ijzerman AP, van der Wenden EM, von Frijtag Drabbe Künzel JK, Mathôt RAA, Danhof M, Borea PA, Varani K (1994) Partial agonism of theophylline-7-riboside on adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 350:638–645

    CAS  PubMed  Google Scholar 

  • Jacobson KA (1996) Specific ligands for the adenosine receptor family. Neurotransmissions 12:1–6

    Google Scholar 

  • Jacobson KA, van Galen PJ, Williams M (1992) Adenosine receptors: pharmacology, structure-activity relationships, and therapeutic potential. J Med Chem 35:407–422

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen P, Karton Y (1993a) Structure-activity relationships of 8-styrylxanthines as A2- selective antagonists. J Med Chem 36:1333–1342

    CAS  PubMed  Google Scholar 

  • Jacobson KA, King BF, Burnstock GF (2000) Pharmacological characterization of P2 (nucleotide) receptors. Celltransmissions 16:3–16

    Google Scholar 

  • Kimatrai-Salvador M, Baraldi PG, Romagnoli R (2013) Allosteric modulation of A1-adenosine receptor: a review. Drug Discov Today Technol 10(2):e285–e296

    PubMed  Google Scholar 

  • Klotz KN (2000) Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharmacol 362:382–391

    CAS  PubMed  Google Scholar 

  • Klotz KN, Lohse MJ, Schwabe U, Cristalli G, Vittori S, Grifantini M (1989) 2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA) – a high affinity agonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 340:679–683

    CAS  PubMed  Google Scholar 

  • Kull B, Svenningsson P, Fredholm BB (2000a) Adenosine A(2A) receptors are colocalized with and activate g(olf) in rat striatum. Mol Pharmacol 58(4):771–777

    CAS  PubMed  Google Scholar 

  • Kull B, Svenningsson P, Hall H, Fredholm BB (2000b) GTP differentially affects antagonist radioligand binding to adenosine A(1) and A(2A) receptors in human brain. Neuropharmacology 39(12):2374–2380

    CAS  PubMed  Google Scholar 

  • Latini S, Bordoni F, Pedata F, Corradetti R (1999) Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 127(3):729–739

    PubMed Central  CAS  PubMed  Google Scholar 

  • Libert F, Van Sande J, Lefort A, Czernilofsky A, Dumont JE, Vassart G, Ensinger JA, Mendia KD (1992) Cloning and functional characterization of a human A1 adenosine receptor. Biochem Biophys Res Commun 187:919–926

    CAS  PubMed  Google Scholar 

  • Linden J (1994) Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15(8):298–306

    Google Scholar 

  • Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 44:524–532

    Google Scholar 

  • Linden J, Jacobson ME, Hutchins C, Williams M (1994) Adenosine receptors. In: Peroutka SJ (ed) Handbook of receptors and channels. G protein coupled receptors, vol 1. CRC Press, Boca Raton, pp 29–44

    Google Scholar 

  • Lloyd HG, Fredholm BB (1995) Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int 26(4):387–395

    CAS  PubMed  Google Scholar 

  • Lohse MJ, Klotz KN, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA (1987) 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) – a high affinity antagonist radioligand for A1 adenosine receptors? Naunyn Schmiedebergs Arch Pharmacol 336:204–210

    CAS  PubMed  Google Scholar 

  • Londos C, Cooper DM, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A 77(5):2551–2554

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lorbar M, Chung ES, Nabi A, Skalova K, Fenton RA, Dobson JG Jr, Meyer TE (2004) Receptors subtypes involved in adenosine-mediated modulation of norepinephrine release from cardiac nerve terminals. Can J Physiol Pharmacol 82(11):1026–1031

    CAS  PubMed  Google Scholar 

  • Morrison RR, Teng B, Oldenburg PJ, Katwa LC, Schnermann JB, Mustafa SJ (2006) Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes. Am J Physiol Heart Circ Physiol 291(4):H1875–H1882, Epub 2006 May 5

    CAS  PubMed  Google Scholar 

  • Murphy KMM, Snyder SH (1982) Heterogeneity of adenosine A1 receptor binding in brain tissue. Mol Pharmacol 22:250–257

    CAS  PubMed  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  • Olsson RA, Pearson JC (1990) Cardiovascular purinoceptors. Pharmacol Rev 70:761–845

    CAS  Google Scholar 

  • Palmer TM, Stiles GL (1995) Adenosine receptors. Neuropharmacology 34(7):683–694

    CAS  PubMed  Google Scholar 

  • Peakman MC, Hill SJ (1994) Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. Br J Pharmacol 111(1):191–198

    Google Scholar 

  • Perlini S, Khoury EP, Norton GR, Chung ES, Fenton RA, Dobson JG Jr, Meyer TE (1998) Adenosine mediates sustained adrenergic desensitization in the rat heart via activation of protein kinase C. Circ Res 83(7):761–771

    CAS  PubMed  Google Scholar 

  • Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16:178–239

    Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268

    PubMed Central  CAS  PubMed  Google Scholar 

  • Romano FD, Dobson JG Jr (1990) Adenosine modulates beta-adrenergic signal transduction in guinea-pig heart ventricular membranes. J Mol Cell Cardiol 22(12):1359–1370

    CAS  PubMed  Google Scholar 

  • Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992a) Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol Sci 13(12):439–445

    CAS  PubMed  Google Scholar 

  • Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992b) Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev 4:346–369

    CAS  PubMed  Google Scholar 

  • Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the adenosine 3′, 5′-phosphate content of guinea pig cerebral cortical slices. Mol Pharmacol 6:13–17

    CAS  PubMed  Google Scholar 

  • Schingnitz G, Küfner-Mühl U, Ensinger H, Lehr E, Kühn FJ (1991) Selective A1-antagonists for treatment of cognitive deficits. Nucleosides Nucleotides 10:1067–1076

    CAS  Google Scholar 

  • Schubert P, Komp W, Kreutzberg GW (1979) Correlation of 5′-nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus. Brain Res 168(2):419–424

    CAS  PubMed  Google Scholar 

  • Schulte G, Fredholm BB (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58(3):477–482

    CAS  PubMed  Google Scholar 

  • Schwabe U, Trost T (1980) Characterization of adenosine receptors in rat brain by (–)[3H]N6-phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacol 313:179–187

    CAS  PubMed  Google Scholar 

  • Shimada J, Suzuki F, Nonaka H, Ishii A, Ichikawa S (1992) (E)- 1,3-dialkyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanthines: potent and selective A2 antagonists. J Med Chem 35:2342–2345

    CAS  PubMed  Google Scholar 

  • Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79(12A):2–10

    CAS  PubMed  Google Scholar 

  • Siggins GR, Schubert P (1981) Adenosine depression of hippocampal neurons in vitro: an intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci Lett 23:55–60

    CAS  PubMed  Google Scholar 

  • Stiles GL, Daly DT, Olsson RA (1985) The A1 receptor. Identification of the binding subunit by photoaffinity crosslinking. J Biol Chem 260:10806–10811

    Google Scholar 

  • VanCalker D, Müller M, Hamprecht B (1978) Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 276:839–841

    CAS  Google Scholar 

  • Von Lubitz DKJE, Kim J, Beenhakker M, Carter MF, Lin RCS, Meshulam Y, Daly JW, Shi D, Zhou LM, Jacobson KA (1995) Chronic NMDA receptor stimulation: therapeutic implications of its effect on adenosine A1 receptors. Eur J Pharmacol 283:185–192

    Google Scholar 

  • Waitling KJ (2006) The sigma RBI handbook of receptor classification and signal transduction, 5th edn. Sigma-Aldrich, St Louis, pp 86–87, 130–137

    Google Scholar 

  • Wei CJ, Li W, Chen JF (2011) Normal and abnormal functions of adenosine receptors in the central nervous system revealed by genetic knockout studies. Biochim Biophys Acta 1808(5):1358–1379. doi:10.1016/j.bbamem.2010.12.018, Epub 2010 Dec 23

    CAS  PubMed  Google Scholar 

  • Winn HR, Rubio R, Berne RM (1981) Brain adenosine concentration during hypoxia in rats. Am J Physiol 241(2):H235–H242

    Google Scholar 

  • Yaar R, Jones MR, Chen JF, Ravid K (2005) Animal models for the study of adenosine receptor function. J Cell Physiol 202(1):9–20

    CAS  PubMed  Google Scholar 

  • Zetterström T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett 29(2):111–115

    PubMed  Google Scholar 

  • Zhou QY, Li C, Olah ME Johnson RA, Stiles GL (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci 89:7432–7436

    Google Scholar 

  • Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):299–309

    CAS  PubMed  Google Scholar 

  • Zimmermann H, Braun N, Kegel B, Heine P (1998) New insights into molecular structure and function of ectonucleotidases in the nervous system. Neurochem Int 32(5–6):421–425

    CAS  PubMed  Google Scholar 

Adenosine A2 Receptor Binding

  • Auchampach JA (2007) Adenosine receptors and angiogenesis. Circ Res 101(11):1075–1077

    Google Scholar 

  • Auchampach JA, Jin X, Wan TC, Caughey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52(5):846–860

    Google Scholar 

  • Balwierczak JL, Sharif R, Krulan CM, Field FP, Weiss GB, Miller MJ (1991) Comparative effects of a selective adenosine A2 receptor agonist, CGS 21680, and nitroprusside in vascular smooth muscle. Eur J Pharmacol 196(2):117–123

    CAS  PubMed  Google Scholar 

  • Brackett LE, Daly JW (1994) Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol 47(5):801–814

    Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    Google Scholar 

  • Chen JF, Huang Z, Ma J, Zhu J, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA (1999) A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19(21):9192–9200

    CAS  PubMed  Google Scholar 

  • Chen JF, Lee CF, Chern Y (2014) Adenosine receptor neurobiology: overview. Int Rev Neurobiol 119:1–49

    Google Scholar 

  • Chern Y, King K, Lai HL, Lai HT (1992) Molecular cloning of a novel adenosine receptor gene from rat brain. Biochem Biophys Res Commun 185(1):304–309

    CAS  PubMed  Google Scholar 

  • Dasgupta S, Ferré S, Kull B, Hedlund PB, Finnman UB, Ahlberg S, Arenas E, Fredholm BB, Fuxe K (1996) Adenosine A2A receptors modulate the binding characteristics of dopamine D2 receptors in stably cotransfected fibroblast cells. Eur J Pharmacol 316(2–3):325–331

    CAS  PubMed  Google Scholar 

  • de Lera Ruiz M, Lim YH, Zheng J (2014) Adenosine A2A receptor as a drug discovery target. J Med Chem 57(9):3623–3650

    Google Scholar 

  • Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, Marshall FH (2011) Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19(9):1283–1293

    PubMed Central  PubMed  Google Scholar 

  • Feoktistov I, Biaggioni I (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96(4):1979–1986

    Google Scholar 

  • Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Voyno-Yasenetskaya T, Biaggioni I (2002) Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res 90(5):531–538

    CAS  PubMed  Google Scholar 

  • Feoktistov I, Ryzhov S, Goldstein AE, Biaggioni I (2003) Mast cell-mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors. Circ Res 92(5):485–492

    CAS  PubMed  Google Scholar 

  • Ferré S, Quiroz C, Woods AS, Cunha R, Popoli P, Ciruela F, Lluis C, Franco R, Azdad K, Schiffmann SN (2008) An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharm Des 14(15):1468–1474

    PubMed Central  PubMed  Google Scholar 

  • Ferré S, Goldberg SR, Luis C, Franco R (2009) Looking for the role of cannabinoid receptor heteromers in striatal function. Neuropharmacology 56(Suppl 1):226–234

    PubMed Central  PubMed  Google Scholar 

  • Ferre S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A 88(16):7238–7241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fredholm BB, Persson CG (1982) Xanthine derivatives as adenosine receptor antagonists. Eur J Pharmacol 81(4):673–676

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    Google Scholar 

  • Fredholm BB, Cunha RA, Svenningsson P (2003) Pharmacology of adenosine A2A receptors and therapeutic applications. Curr Top Med Chem 3(4):413–426

    CAS  PubMed  Google Scholar 

  • Furlong TJ, Pierce KD, Selbie LA, Shine J (1992) Molecular characterization of a human brain adenosine A2 receptor. Mol Brain Res 15(1–2):62–66

    CAS  PubMed  Google Scholar 

  • Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D, Goldberg SR, Staines W, Jacobsen KX, Lluis C, Woods AS, Agnati LF, Franco R (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26(2–3):209–220

    CAS  PubMed  Google Scholar 

  • Grant MK, Christopoulos A, El-Fakahany EE (1999) Regulation of acetylcholine binding by ATP at the muscarinic M(1) receptor in intact CHO cells. Brain Res 839(1):94–99

    CAS  PubMed  Google Scholar 

  • Gurden MF, Coates J, Ellis F, Evans B, Foster M, Hornby E, Kennedy I, Martin DP, Strong P, Vardey CJ, Wheeldon A (1993) Functional characterization of three adenosine receptor types. Br J Pharmacol 109:693–698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gutiérrez-de-Terán H, Massink A, Rodríguez D, Liu W, Han GW, Joseph JS, Katritch I, Heitman LH, Xia L, Ijzerman AP, Cherezov V, Katritch V, Stevens RC (2013) The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. Structure 21(12):2175–2185

    PubMed  Google Scholar 

  • Hide I, Padgett WL, Jacobson KA, Daly JW (1992) A2A adenosine receptors from rat striatum and rat pheochromocytoma PC12 cells: characterization with radioligand binding and by activation of adenylate cyclase. Mol Pharmacol 41:352–359

    CAS  PubMed  Google Scholar 

  • Hutchinson AJ, Williams M, de Jesus R, Yokoyama R, Oei HH, Ghai GR, Webb RL, Zoganas HC, Stone GA, Jarvis MF (1990) 2-(Arylalkylamino)adenosin-5′ -uronamides: a new class of highly selective adenosine A2 receptor ligands. J Med Chem 33:1919–1924

    Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen PJM, Karton Y (1993b) Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem 36:1333–1342

    CAS  PubMed  Google Scholar 

  • Jacobson MA, Johnson RG, Luneau CJ, Salvatore CA (1995) Cloning and chromosomal localization of the human A2b adenosine receptor gene (ADORA2B) and its pseudogene. Genomics 27(2):374–376

    Google Scholar 

  • Jarvis MF, Schulz R, Hutchison AJ, Do UH, Sills MA, Williams M (1989) [3H]CGS 21 680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharm Exp Ther 251:888–893

    CAS  Google Scholar 

  • Johnston-Cox HA, Koupenova M, Ravid K (2012) A2 adenosine receptors and vascular pathologies. Arterioscler Thromb Vasc Biol 32(4):870–878

    CAS  PubMed  Google Scholar 

  • Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474(7352):521–525

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388(6643):674–678

    CAS  PubMed  Google Scholar 

  • Linden J, Thai T, Figler H, Jin X, Robeva AS (1999) Characterization of human A(2B) adenosine receptors: radioligand binding, western blotting, and coupling to G(q) in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol 56(4):705–713

    CAS  PubMed  Google Scholar 

  • Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337(6091):232–236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maenhaut C, Van Sande J, Libert F, Abramowicz M, Parmentier M, Vanderhaegen JJ, Dumont JE, Vassart G, Schiffmann S (1990) RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Commun 173(3):1169–1178

    CAS  PubMed  Google Scholar 

  • Martin PL (1992) Relative agonist potencies of C2-substituted analogues of adenosine: evidence for adenosine A2B receptors in the guinea pig aorta. Eur J Pharmacol 216(2):235–242

    CAS  PubMed  Google Scholar 

  • Meng F, Xie GX, Chalmers D, Morgan C, Watson SJ Jr, Akil H (1994) Cloning and expression of the A2a adenosine receptor from guinea pig brain. Neurochem Res 19(5):613–621

    CAS  PubMed  Google Scholar 

  • Monopoli A, Conti A, Zocchi C, Casati C, Volpini R, Cristalli G, Ongini E (1994) Pharmacology of the new selective A adenosine receptor agonist 2-hexynyl-5′ – N-ethylcarboxamidoadenosine. Arzneim Forsch/Drug Res 44:1296–1304

    CAS  Google Scholar 

  • Nonaka H, Ichimura M, Takeda M, Nonaka Y, Shimada J, Suzuki F, Yamaguchi K, Kase H (1994) KF17837 ((E)- 8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxantine), a potent and selective adenosine A2 receptor antagonist. Eur J Pharmacol Mol Pharmacol Sect 267:335–341

    CAS  Google Scholar 

  • Ongini E, Adami M, Ferri C, Bertorelli R (1997) Adenosine A2A receptors and neuroprotection. Ann N Y Acad Sci 825:30–48

    CAS  PubMed  Google Scholar 

  • Peakman MC, Hill SJ (1994) Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocyte. Br J Pharmacol 111(1):191–198

    Google Scholar 

  • Pollack AE, Fink JS (1995) Adenosine antagonists potentiate D2 dopamine-dependent activation of Fos in the striatopallidal pathway. Neuroscience 68(3):721–728

    CAS  PubMed  Google Scholar 

  • Poucher SM, Keddie JR, Singh P, Stoggall SM, Caulkett PWR, Jones G, Collis MG (1955) The in vitro pharmacology of ZM 241385, a potent, non-xanthine, A2a selective adenosine receptor antagonist. Br J Pharmacol 115:1096–1102

    Google Scholar 

  • Stehle JH, Rivkees SA, Lee JJ, Weaver DR, Deeds JD, Reppert SM (1992) Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol Endocrinol 6(3):384–393

    CAS  PubMed  Google Scholar 

  • Takagi H, King GL, Robinson GS, Ferrara N, Aiello LP (1996) Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 37(11):2165–2176

    CAS  PubMed  Google Scholar 

  • Torvinen M, Torri C, Tombesi A, Marcellino D, Watson S, Lluis C, Franco R, Fuxe K, Agnati LF (2005) Trafficking of adenosine A2A and dopamine D2 receptors. J Mol Neurosci 25(2):191–200

    CAS  PubMed  Google Scholar 

  • Van der Ploeg I, Ahlberg S, Parkinson FE, Olsson RA, Fredholm BB (1996) Functional characterization of adenosine A2 receptors in Jurkat cells and PC12 cells using adenosine receptor agonists. Naunyn Schmiedebergs Arch Pharmacol 353:250–260

    PubMed  Google Scholar 

  • Varani K, Gessi S, Dalpiaz A, Borea PA (1996) Pharmacological and biochemical characterization of purified A2a adenosine receptors in human platelet membranes by [3H]-CGS 21680 binding. Br J Pharmacol 117:1693–1701

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332(6027):322–327

    PubMed Central  CAS  PubMed  Google Scholar 

Adenosine A3 Receptor Binding

  • Abbracchio MP, Brambilla R, Ceruti S, Kim HO, von Lubitz DKJE, Jacobson KA, Cattabeni F (1995) G protein-dependent activation of phospholipase C by adenosine A3 receptors in rat brain. Mol Pharmacol 48:1038–1045

    CAS  PubMed  Google Scholar 

  • Ali H, Cunha-Melo JR, Saul WF, Beaven MA (1990) Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J Biol Chem 265(2):745–753

    CAS  PubMed  Google Scholar 

  • Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Awwad O, Bin A, Zoppellaro C, Castagliuolo I, Gaion RM, Giron MC, Blandizzi C (2010) Control of enteric neuromuscular functions by purinergic A(3) receptors in normal rat distal colon and experimental bowel inflammation. Br J Pharmacol 161(4):856–871

    PubMed Central  CAS  PubMed  Google Scholar 

  • Auchampach JA, Rizvi A, Qiu Y, Tang XL, Maldonado C, Teschner S, Bolli R (1997) Selective activation of A3 adenosine receptors with N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits. Circ Res 80(6):800–809

    Google Scholar 

  • Baraldi PG, Borea PA (2000) New potent and selective human adenosine A3 receptor antagonists. Trends Pharmacol Sci 21:456–459

    CAS  PubMed  Google Scholar 

  • Baxter GF (2002) Role of adenosine in delayed preconditioning of myocardium. Cardiovasc Res 55(3):483–494

    Google Scholar 

  • Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S (2015). The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67(1):74–102. doi:10.1124/pr.113.008540

    Google Scholar 

  • Burnett LA, Blais EM, Unadkat JD, Hille B, Tilley SL, Babcock DF (2010) Testicular expression of Adora3i2 in Adora3 knockout mice reveals a role of mouse A3Ri2 and human A3Ri3 adenosine receptors in sperm. J Biol Chem 285(44):33662–33670. doi:10.1074/jbc.M110.156075, Epub 2010 Aug 23

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burnstock G, Ralevic V (2013) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66(1):102–192.

    PubMed  Google Scholar 

  • Chanyshev B, Shainberg A, Isak A, Litinsky A, Chepurko Y, Tosh DK, Phan K, Gao ZG, Hochhauser E, Jacobson KA (2012) Anti-ischemic effects of multivalent dendrimeric A3 adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart. Pharmacol Res 65(3):338–346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of the inhibitor which causes 50 % inhibition (IC50) of an enzyme reaction. Biochem Pharmacol 22:3099–3108

    CAS  PubMed  Google Scholar 

  • Cross HR, Murphy E, Black RG, Auchampach J, Steenbergen C (2002) Overexpression of A(3) adenosine receptors decreases heart rate, preserves energetics, and protects ischemic hearts. Am J Physiol Heart Circ Physiol 283(4):H1562–H1568

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118(6):1461–1468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ, Auchampach JA (2006) Cl-IB-MECA [2-chloro-N6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide] reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther 319(3):1200–1210

    CAS  PubMed  Google Scholar 

  • Ge ZD, van der Hoeven D, Maas JE, Wan TC, Auchampach JA (2010) A(3) adenosine receptor activation during reperfusion reduces infarct size through actions on bone marrow-derived cells. J Mol Cell Cardiol 49(2):280–286

    PubMed Central  CAS  PubMed  Google Scholar 

  • Germack R, Dickenson JM (2005) Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39(3):429–442

    CAS  PubMed  Google Scholar 

  • Hannon JP, Pfannkuche HJ, Fozard JR (1995) A role for mast cells in adenosine A3 receptor-mediated hypotension in the rat. Br J Pharmacol 115:945–952

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison GJ, Cerniway RJ, Peart J, Berr SS, Ashton K, Regan S, Paul Matherne G, Headrick JP (2002) Effects of A(3) adenosine receptor activation and gene knock-out in ischemic-reperfused mouse heart. Cardiovasc Res 53(1):147–155

    CAS  PubMed  Google Scholar 

  • Haskó G, Cronstein B (2013) Regulation of inflammation by adenosine. Front Immunol 4:85

    Google Scholar 

  • Headrick JP, Peart J (2005) A3 adenosine receptor-mediated protection of the ischemic heart. Vascul Pharmacol 42(5–6):271–279

    CAS  PubMed  Google Scholar 

  • Hussain A, Gharanei AM, Nagra AS, Maddock HL (2014) Caspase inhibition via A3 adenosine receptors: a new cardioprotective mechanism against myocardial infarction. Cardiovasc Drugs Ther 28(1):19–32

    CAS  PubMed  Google Scholar 

  • Jacobson KA, Nikodijevic O, Shi D, Gallo-Rodriguez C, Olah ME, Stiles GR, Daly JW (1993) A role of central A3 adenosine receptors. Mediation of behavioral depressant effects. FEBS Lett 336:57–60

    Google Scholar 

  • Jacobson KA, Kim HO, Siddiqi SM, Olah ME, Stiles GL, von Lubitz DKJE (1995) A3 adenosine receptors: design of selective ligands of and therapeutic concepts. Drugs Future 20:689–699

    Google Scholar 

  • Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100(11):2849–2857

    PubMed Central  CAS  PubMed  Google Scholar 

  • Linden J (1994) Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 15(8):298–306

    Google Scholar 

  • Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH, Rivkees SA, Fink JS, Reppert SM (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 44(3):524–532

    Google Scholar 

  • McIntosh VJ, Lasley RD (2012) Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 17(1):21–33

    CAS  PubMed  Google Scholar 

  • Meyerhof W, Paust HJ, Schönrock C, Richter D (1991) Cloning of a cDNA encoding a novel putative G-protein-coupled receptor expressed in specific rat brain regions. DNA Cell Biol 10(9):689–694

    CAS  PubMed  Google Scholar 

  • Olah ME, Gallo-Rodriguez C, Jacobson KA, Stiles GL (1994) 125I-4-aminobenzyl-5′-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol Pharmacol 45:978–982

    CAS  PubMed  Google Scholar 

  • Palmer TM, Gettys TW, Stiles GL (1995) Differential interaction with and regulation of multiple G-proteins by the rat A3 adenosine receptor. J Biol Chem 270:16895–16902

    CAS  PubMed  Google Scholar 

  • Ramkumar V, Stiles GL, Beaven M, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268:16887–16890

    CAS  PubMed  Google Scholar 

  • Rivkees SA (1994) Localization and characterization of adenosine receptor expression in rat testis. Endocrinology 135(6):2307–2313

    CAS  PubMed  Google Scholar 

  • Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A 90(21):10365–10369

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shneyvays V, Nawrath H, Jacobson KA, Shainberg A (1998) Induction of apoptosis in cardiac myocytes by an A3 adenosine receptor agonist. Exp Cell Res 243(2):383–397

    CAS  PubMed  Google Scholar 

  • Shneyvays V, Mamedova L, Zinman T, Jacobson K, Shainberg A (2001) Activation of A(3)adenosine receptor protects against doxorubicin-induced cardiotoxicity. J Mol Cell Cardiol 33(6):1249–1261

    CAS  PubMed  Google Scholar 

  • Stiles GL, Daly DT, Olsson RA (1985) The adenosine A1 receptor. Identification of the binding subunit by photoaffinity cross-linking. J Biol Chem 260:10806–10811

    Google Scholar 

  • Thourani VH, Nakamura M, Ronson RS, Jordan JE, Zhao ZQ, Levy JH, Szlam F, Guyton RA, Vinten-Johansen J (1999a) Adenosine A(3)-receptor stimulation attenuates postischemic dysfunction through K(ATP) channels. Am J Physiol 277(1 Pt 2):H228–H235

    CAS  PubMed  Google Scholar 

  • Thourani VH, Ronson RS, Jordan JE, Guyton RA, Vinten-Johansen J (1999b) Adenosine A3 pretreatment before cardioplegic arrest attenuates postischemic cardiac dysfunction. Ann Thorac Surg 67(6):1732–1737

    CAS  PubMed  Google Scholar 

  • Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH (2000) Adenosine and inosine increase cutaneous vasopermeability by activating A(3) receptors on mast cells. J Clin Invest 105(3):361–367

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tracey WR, Magee W, Masamune H, Kennedy SP, Knight DR, Buchholz RA, Hill RJ (1997) Selective adenosine A3 receptor stimulation reduces ischemic myocardial injury in the rabbit heart. Cardiovasc Res 33(2):410–415

    CAS  PubMed  Google Scholar 

  • van Galen PJM, van Bergen AH, Gallo-Rodriguez C, Melman N, Olah ME, Ijzerman AP, Stiles GL, Jacobson KA (1994) A binding site model and structure-activity relationships for the rat A3 adenosine receptor. Mol Pharmacol 45:1101–1111

    PubMed  Google Scholar 

  • Von Lubitz DKJE, Lin RCS, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263:59–67

    Google Scholar 

  • Von Lubitz DKJE, Carter MF, Deutsch SI, Lin RCS, Mastropaolo J, Meshulam Y, Jacobson KA (1995) The effects of adenosine A3 receptor stimulation on seizures in mice. Eur J Pharmacol 275:23–29

    Google Scholar 

  • Xu Z, Jang Y, Mueller RA, Norfleet EA (2006) IB-MECA and cardioprotection. Cardiovasc Drug Rev 24(3–4):227–238

    CAS  PubMed  Google Scholar 

  • Zhao TC, Kukreja RC (2002) Late preconditioning elicited by activation of adenosine A(3) receptor in heart: role of NF- kappa B, iNOS and mitochondrial K(ATP) channel. J Mol Cell Cardiol 34(3):263–277

    CAS  PubMed  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89(16):7432–7436

    Google Scholar 

Inhibition of Adenosine Uptake in Human Erythrocytes

  • Bowmer CJ, Yates MS (1989) Therapeutic potential for new selective adenosine receptor ligands and metabolism inhibitors. Trends Pharmacol Sci 10:339–341

    CAS  PubMed  Google Scholar 

  • Geiger JD, Fyda DM (1991) Adenosine transport in nervous system tissues. In: Stone TW (ed) Adenosine in the nervous system. Academic, London/San Diego/New York, pp 1–23

    Google Scholar 

  • Marangos PJ, Patel J, Clark-Rosenberg R, Martino AM (1982) [3H]Nitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain. J Neurochem 39:184–191

    CAS  PubMed  Google Scholar 

  • Porsche E (1982) Effects of methylxanthine derivates on the adenosine uptake in human erythrocytes. IRCS Med Sci 10:389

    CAS  Google Scholar 

  • Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992c) Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev 4:346–369

    CAS  PubMed  Google Scholar 

  • Verma A, Marangos PJ (1985) Nitrobenzylthioinosine binding in brain: an interspecies study. Life Sci 36:283–290

    CAS  PubMed  Google Scholar 

  • Winn HR, Rubio GR, Berne RM (1981) The role of adenosine in the regulation of cerebral blood flow. J Cerebr Blood Flow Metab 1:239–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gralinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gralinski, M., Neves, L.A.A., Tiniakova, O. (2015). Effects of Adenosine Receptors. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_140-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_140-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Adenosine Receptors
    Published:
    24 February 2015

    DOI: https://doi.org/10.1007/978-3-642-27728-3_140-2

  2. Original

    Effects of Adenosine Receptors
    Published:
    05 February 2015

    DOI: https://doi.org/10.1007/978-3-642-27728-3_140-1