Skip to main content

Genes and Cell Type Specification in Cerebellar Development

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

One of the key goals of mammalian neural development is to make specific cell types that originate from multipotent progenitor cells. We are only beginning to understand this process of cell specification; however, evidence suggests that it occurs in a stepwise fashion and it is likely that each step requires the coordinated expression of a unique set of genes working in concert with environmental signals. The cerebellum is an excellent model system for understanding cell fate questions because it contains only a handful of defined cell types that are each located in a specific lamina with distinct molecular signatures and are therefore easily identified. These features have made the cerebellum an ideal model to help us understand the gene networks that give rise to specific cell types during development. In this review, we will discuss recent advances in parsing the molecular pathways necessary to produce specific cerebellar cell types. We will then discuss two open-source cerebellar transcriptomic databases, GRiTS (Gene Regulation in Time and Space) project (www.CBGRiTS.org) and RIKEN FANTOM5 (fantom.gsc.riken.jp/5/), which have amassed whole genome readouts of cerebellar gene expression on a daily basis during embryogenesis and every 3 days postnatally. Finally, we will briefly review our efforts to mine this transcriptomic information using bioinformatic tools to identify new genes that may confer cell type specificity during cerebellar development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brulet P (1995) Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290

    CAS  PubMed  Google Scholar 

  • Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R (1995) A mammalian helix-loop-helix factor structurally related to the product of drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 270:8730–8738

    Article  CAS  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions. CRC Press, Boca Raton

    Google Scholar 

  • Andersson R et al (2014) An atlas of active enhancers across human cell types and tissues. Nature (England) 507:455–461

    Article  CAS  Google Scholar 

  • Arner E et al (2015) Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347:1010–1014

    Article  CAS  Google Scholar 

  • Barabási A, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5:101

    Article  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature (ENGLAND) 390:169–172

    Article  CAS  Google Scholar 

  • Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3:1–122

    Article  Google Scholar 

  • Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature (ENGLAND) 401:164–168

    Article  CAS  Google Scholar 

  • Carter RA, Bihannic L, Rosencrance C, Hadley JL, Tong Y, Phoenix TN, Natarajan S, Easton J, Northcott PA, Gawad C (2018) A single-cell transcriptional atlas of the developing murine cerebellum. Curr Biol (England) 28:2910–2920.e2

    Article  CAS  Google Scholar 

  • Cerrato V, Parmigiani E, Figueres-Onate M, Betizeau M, Aprato J, Nanavaty I, Berchialla P, Luzzati F, de'Sperati C, Lopez-Mascaraque L, Buffo A (2018) Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biol (United States) 16:e2005513

    Article  Google Scholar 

  • Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development (England) 133:2793–2804

    Article  CAS  Google Scholar 

  • Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A (United States) 107:10725–10730

    Article  CAS  Google Scholar 

  • Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R (2011) Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev (England) 6:25–8104-6-25

    Article  Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature (England) 380:66–68

    Article  CAS  Google Scholar 

  • de Rie D et al (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol (United States) 35:872–878

    Article  Google Scholar 

  • Engelkamp D, Rashbass P, Seawright A, van Heyningen V (1999) Role of Pax6 in development of the cerebellar system. Development 126:3585–3596

    CAS  PubMed  Google Scholar 

  • Englund C, Kowalczyk T, Daza RAM, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195

    Article  CAS  Google Scholar 

  • FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al (2014) A promoter-level mammalian expression atlas. Nature (England) 507:462–470

    Article  Google Scholar 

  • Fernandes M, Antoine M, Hebert JM (2012) SMAD4 is essential for generating subtypes of neurons during cerebellar development. Dev Biol (United States) 365:82–90

    Article  CAS  Google Scholar 

  • Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci (United States) 26:3066–3076

    Article  CAS  Google Scholar 

  • Florio M, Leto K, Muzio L, Tinterri A, Badaloni A, Croci L, Zordan P, Barili V, Albieri I, Guillemot F, Rossi F, Consalez GG (2012) Neurogenin 2 regulates progenitor cell-cycle progression and purkinje cell dendritogenesis in cerebellar development. Development 139:2308–2320

    Article  CAS  Google Scholar 

  • Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M (2009) Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol (United States) 328:422–433

    Article  CAS  Google Scholar 

  • Gui S, Rice AP, Chen R, Wu L, Liu J, Miao H (2017) A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data. BMC Bioinform (England) 18:74–017-1489-z

    Article  Google Scholar 

  • Ha T, Swanson D, Larouche M, Glenn R, Weeden D, Zhang P, Hamre K, Langston M, Phillips C, Song M, Ouyang Z, Chesler E, Duvvurru S, Yordanova R, Cui Y, Campbell K, Ricker G, Phillips C, Homayouni R, Goldowitz D (2015) CbGRiTS: cerebellar gene regulation in time and space. Dev Biol 397:18–30

    Article  CAS  Google Scholar 

  • Hagan N, Zervas M (2012) Wnt1 expression temporally allocates upper rhombic lip progenitors and defines their terminal cell fate in the cerebellum. Mol Cell Neurosci (United States) 49:217–229

    Article  CAS  Google Scholar 

  • Hashimoto R, Hori K, Owa T, Miyashita S, Dewa K, Masuyama N, Sakai K, Hayase Y, Seto Y, Inoue YU, Inoue T, Ichinohe N, Kawaguchi Y, Akiyama H, Koizumi S, Hoshino M (2016) Origins of oligodendrocytes in the cerebellum, whose development is controlled by the transcription factor. Sox9 Mech Dev (Ireland) 140:25–40

    Article  CAS  Google Scholar 

  • Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models-a review. BioSystems (Ireland) 96:86–103

    Article  CAS  Google Scholar 

  • Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res (Ireland) 55:223–233

    Article  CAS  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron (United States) 47:201–213

    CAS  Google Scholar 

  • Huang X, Ketova T, Fleming JT, Wang H, Dey SK, Litingtung Y, Chiang C (2009) Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development (England) 136:2535–2543

    Article  CAS  Google Scholar 

  • Jensen P, Smeyne R, Goldowitz D (2004) Analysis of cerebellar development in math1 null embryos and chimeras. J Neurosci (United States) 24:2202–2211

    Article  CAS  Google Scholar 

  • Joyner AL, Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn (United States) 235:2376–2385

    Article  Google Scholar 

  • Kim EJ, Battiste J, Nakagawa Y, Johnson JE (2008) Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture. Mol Cell Neurosci (United States) 38:595–606

    Article  CAS  Google Scholar 

  • Krizhanovsky V, Ben-Arie N (2006) A novel role for the choroid plexus in BMP-mediated inhibition of differentiation of cerebellar neural progenitors. Mech Dev (Ireland) 123:67–75

    Article  CAS  Google Scholar 

  • Laine J, Axelrad H (1994) The candelabrum cell: a new interneuron in the cerebellar cortex. J Comp Neurol (United States) 339:159–173

    Article  CAS  Google Scholar 

  • Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron (United States) 48:933–947

    CAS  Google Scholar 

  • Leclerc RD (2008) Survival of the sparsest: robust gene networks are parsimonious. Mol Syst Biol (England) 4:213

    Google Scholar 

  • Lee SM, Danielian PS, Fritzsch B, McMahon AP (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124:959–969

    CAS  PubMed  Google Scholar 

  • Li JY, Joyner AL (2001) Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development (England) 128:4979–4991

    CAS  Google Scholar 

  • Liu ZP, Wu C, Miao H, Wu H (2015) RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford, England) 2015. https://doi.org/10.1093/database/bav095. Print 2015

    Article  Google Scholar 

  • Lundell TG, Zhou Q, Doughty ML (2009) Neurogenin1 expression in cell lineages of the cerebellar cortex in embryonic and postnatal mice. Dev Dyn 238:3310–3325

    Article  CAS  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron (United States) 48:17–24

    CAS  Google Scholar 

  • Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development (England) 126:1189–1200

    CAS  Google Scholar 

  • Matsunaga E, Katahira T, Nakamura H (2002) Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development. Development 129:5269–5277

    CAS  PubMed  Google Scholar 

  • McMahon AP, Bradley A (1990) The wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell (United States) 62:1073–1085

    CAS  Google Scholar 

  • Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by cre- and flp-mediated recombination. Nat Genet (United States) 18:136–141

    Article  CAS  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol (United States) 4:277–296

    Article  CAS  Google Scholar 

  • Millen KJ, Steshina EY, Iskusnykh IY, Chizhikov VV (2014) Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proc Natl Acad Sci 111:E1777–E1786

    Article  CAS  Google Scholar 

  • Millet S, Campbell K, Epstein DJ, Losos K, Harris E, Joyner AL (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature (England) 401:161–164

    Article  CAS  Google Scholar 

  • Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y (2008) Identification of a novel transcriptional corepressor, Corl2, as a cerebellar purkinje cell-selective marker. Gene Expr Patterns 8:418–423

    Article  CAS  Google Scholar 

  • Noguchi S et al (2017) FANTOM5 CAGE profiles of human and mouse samples. Sci Data (England) 4:170112

    Article  CAS  Google Scholar 

  • Obana EA, Lundell TG, Yi KJ, Radomski KL, Zhou Q, Doughty ML (2015) Neurog1 genetic inducible fate mapping (GIFM) reveals the existence of complex spatiotemporal cyto-architectures in the developing cerebellum. Cerebellum (United States) 14:247–263

    Article  CAS  Google Scholar 

  • Panhuysen M, Vogt Weisenhorn DM, Blanquet V, Brodski C, Heinzmann U, Beisker W, Wurst W (2004) Effects of Wnt1 signaling on proliferation in the developing mid−/hindbrain region. Mol Cell Neurosci (United States) 26:101–111

    Article  CAS  Google Scholar 

  • Parmigiani E, Leto K, Rolando C, Figueres-Onate M, Lopez-Mascaraque L, Buffo A, Rossi F (2015) Heterogeneity and bipotency of astroglial-like cerebellar progenitors along the interneuron and glial lineages. J Neurosci (United States) 35:7388–7402

    Article  CAS  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A (United States) 104:5193–5198

    Article  CAS  Google Scholar 

  • Pimeisl IM, Tanriver Y, Daza RA, Vauti F, Hevner RF, Arnold HH, Arnold SJ (2013) Generation and characterization of a tamoxifen-inducible eomes (CreER) mouse line. Genesis (United States) 51:725–733

    CAS  PubMed Central  Google Scholar 

  • Ramón y Cajal S (1960) Studies on vertebrate neurogenesis. Thomas, Springfield

    Google Scholar 

  • Seto Y et al (2014) Temporal identity transition from purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun (England) 5:3337

    Article  Google Scholar 

  • Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL (2011) Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci (United States) 31:11055–11069

    Article  CAS  Google Scholar 

  • Swanson DJ, Tong Y, Goldowitz D (2005) Disruption of cerebellar granule cell development in the Pax6 mutant, sey mouse. Brain Res Dev Brain Res (Netherlands) 160:176–193

    Article  CAS  Google Scholar 

  • Takahashi M, Osumi N (2002) Pax6 regulates specification of ventral neurone subtypes in the hindbrain by establishing progenitor domains. Development (England) 129:1327–1338

    CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature (England) 346:847–850

    Article  CAS  Google Scholar 

  • Tong KK, Kwan KM (2013) Common partner smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol (United States) 33:1925–1937

    Article  CAS  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron (United States) 48:31–43

    CAS  Google Scholar 

  • Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development (England) 124:2923–2934

    CAS  Google Scholar 

  • Wizeman JW, Guo Q, Wilion EM, Li JY (2019) Specification of diverse cell types during early neurogenesis of the mouse cerebellum. Elife (England) 8. https://doi.org/10.7554/eLife.42388

  • Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, Kawaguchi Y, Nabeshima Y, Hoshino M (2014) Specification of spatial identities of cerebellar neuron progenitors by Ptf1a and Atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci 34:4786–4800

    Article  Google Scholar 

  • Yeung J, Goldowitz D (2017) Wls expression in the rhombic lip orchestrates the embryonic development of the mouse cerebellum. Neuroscience (United States) 354:30–42

    CAS  Google Scholar 

  • Yeung J, Ha TJ, Swanson DJ, Choi K, Tong Y, Goldowitz D (2014) Wls provides a new compartmental view of the rhombic lip in mouse cerebellar development. J Neurosci 34:12527–12537

    Article  Google Scholar 

  • Yeung J, Ha TJ, Swanson DJ, Goldowitz D (2016) A novel and multivalent role of Pax6 in cerebellar development. J Neurosci 36:9057–9069

    Article  CAS  Google Scholar 

  • Zordan P, Croci L, Hawkes R, Consalez GG (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn (United States) 237:1726–1735

    Article  CAS  Google Scholar 

  • Zou M, Conzen SD (2005) A new dynamic bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics (England) 21:71–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Goldowitz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yeung, J., Larouche, M., Ramirez, M., Robert, R., Goldowitz, D. (2019). Genes and Cell Type Specification in Cerebellar Development. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_15-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_15-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics