Skip to main content

Intuitive Methods of Industrial Robot Programming in Advanced Manufacturing Systems

  • Conference paper
  • First Online:
Intelligent Systems in Production Engineering and Maintenance (ISPEM 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 835))

Abstract

In this article a brief review of the modern industrial robot programming methods is given. It is noted that there are a lot of research conducted to improve robot programming process, make it shorter, easier, cost-effective and user friendly. These goals can be achieved by implementing of new advanced achievements of the IT sphere into industrial robotics. Industrial robot programing by demonstration alongside with the use of virtual and augmented reality is one of the most promising technologies that can significantly reduce the integration costs and time for industrial robot integration into a production process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stadler, S., Kain, K., Giuliani, M., Mirnig, N., Stollnberger, G., Tscheligi, M.: Augmented reality for industrial robot programmers: workload analysis for task-based, augmented reality-supported robot control. In: The 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, pp. 179–184 (2016)

    Google Scholar 

  2. Akan, B., Ameri, A.E., Çürüklü, B.: Augmented reality-based industrial robot control. In: Larsson, T., Kjelldahl, L., Jää-Aro, K.-M. (eds.) Proceedings of the SIGRAD 2011. Evaluations of Graphics and Visualization – Efficiency, Usefulness, Accessibility, Usability, Stockholm, Sweden, pp. 113–114 (2011)

    Google Scholar 

  3. Akan, B., Ameri, A., Çürüklü, B., Asplund, L.: Intuitive industrial robot programming through incremental multimodal language and augmented reality. In: 2011 IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, pp. 3934–3939 (2011)

    Google Scholar 

  4. Schraft, R.D., Meyer, C.: The need for an intuitive teaching method for small and medium enterprises. In: Joint Conference of the International Symposium on Robotics (ISR) and the German Conference on Robotics (ROBOTIK), Munich, pp. 95–105 (2006)

    Google Scholar 

  5. Fang, H.C., Ong, S.K., Nee, A.Y.C.: Novel AR-based interface for human-robot interaction and visualization. Adv. Manuf. 2(4), 275–288 (2014)

    Article  Google Scholar 

  6. Neto, P., Pires, J.N., Moreira, A.P.: 3D CAD-based robot programming for the SME shop-floor. In: 20th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2010, San Francisco (2010)

    Google Scholar 

  7. Bischoff, R., Kazi, A., Seyfarth, M.: The MORPHA style guide for icon-based programming. In: Proceedings of the 11th IEEE Symposium on Robot and Human Interactive Communication, pp. 482–487, Berlin (2002)

    Google Scholar 

  8. Dániel, B., Korondi, P., Sziebig, G., Thomessen, T.: Evaluation of flexible graphical user interface for intuitive human robot interactions. Acta Polytech. Hung. 11(1), 135–151 (2014)

    Google Scholar 

  9. Jan, Y., Hassan, S., Pyo, S., Yoon, J.: Smartphone based control architecture of teaching pendant for industrial manipulators. In: 2013 4th International Conference on Intelligent Systems, Modelling and Simulation (ISMS 2013), Bangkok, pp. 370–375. IEEE (2013)

    Google Scholar 

  10. Mateo, C., Brunete, A., Gambao, E., Hernando, M.: Hammer: An android based application for end-user industrial robot programming. In: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, pp. 1–6 (2014)

    Google Scholar 

  11. PickApp 1.1: Intuitive interface for robot programming on your Android tablet. http://www.comau.com/EN/our-competences/robotics/software/pickapp. Accessed 20 Apr 2018

  12. Abbas, S.M., Hassan, S., Yun, J.: Augmented reality based teaching pendant for industrial robot. In: 2012 12th International Conference on Control, Automation and Systems (ICCAS), Jeju Island, Korea, pp. 2210–2213 (2012)

    Google Scholar 

  13. Friedrich, H., Münch, S., Dillmann, R., Bocionek, S., Sassin, M.: Robot programming by demonstration (RPD): supporting the induction by human interaction. Mach. Learn. 23(2/3), 163–189 (1996)

    Article  Google Scholar 

  14. Münch, S., Kreuziger, J., Kaiser, M., Dillmann, R.: Robot programming by demonstration (RPD) - using machine learning and user interaction methods for the development of easy and comfortable robot programming systems. In: Proceedings of the 24th International Symposium on Industrial Robots (ISIR 1994), pp. 685–693 (1994)

    Google Scholar 

  15. Gaschler, A.K., Springer, M., Rickert, M., Knoll, A.: Intuitive robot tasks with augmented reality and virtual obstacles. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Hong Kong (2014)

    Google Scholar 

  16. Aron, C., Marius, I., Cojanu, C., Mogan, G.: Programming of robots using virtual reality technologies. In: Talaba, D., Amditis, A. (eds.) Product Engineering, pp. 555–563. Springer, Dordrecht (2008)

    Chapter  Google Scholar 

  17. Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997)

    Article  Google Scholar 

  18. Campbell, M., Kelly, S., Jung, R., Lang, J.: The State of Industrial Augmented Reality 2017. PTC (2017). https://www.ptc.com/-/media/Files/PDFs/Augmented-Reality/State-of-AR-Whitepaper.pdf. Accessed 20 April 2018

  19. Andersson, N., Argyrou, A., Nägele, F., Ubis, F., Campos, U.E., de Zarate, M.O., Wilterdink, R.: AR-enhanced human-robot-interaction - methodologies, algorithms, tools. Procedia CIRP (2016)

    Article  Google Scholar 

  20. Lambrecht, J., Kleinsorge, M., Rosenstrauch, M., Krüger, J.: Spatial programming for industrial robots through task demonstration. Int. J. Adv. Rob. Syst. 10(5), 254 (2013)

    Article  Google Scholar 

  21. Lambrecht, J., Krüger, J.: Spatial programming for industrial robots: efficient, effective and user-optimised through natural communication and augmented reality. AMR 1018, 39–46 (2014)

    Article  Google Scholar 

  22. Lambrecht, J., Walzel, H., Krüger, J.: Robust finger gesture recognition on handheld devices for spatial programming of industrial robots. In: 2013 IEEE RO-MAN. The 22nd IEEE International Symposium on Robot and Human Interactive Communication, Gyeongju, Korea, 26–29 August 2013, pp. 99–106 (2013)

    Google Scholar 

  23. Fang, H.C., Ong, S.K., Nee, A.Y.C.: Interactive robot trajectory planning and simulation using augmented reality. Robot. Comput. Integr. Manuf. 28(2), 227–237 (2012)

    Article  Google Scholar 

  24. Ong, S.K., Chong, J.W.S., Nee, A.Y.C.: A novel AR-based robot programming and path planning methodology. Robot. Comput. Integr. Manuf. 26(3), 240–249 (2010)

    Article  Google Scholar 

  25. Pai, Y.S., Yap, H.J., Singh, R.: Augmented reality–based programming, planning and simulation of a robotic work cell. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 229(6), 1029–1045 (2014)

    Article  Google Scholar 

  26. Pai, Y.S., Yap, H.J., Md Dawal, S.Z., Ramesh, S., Phoon, S.Y.: Virtual planning, control, and machining for a modular-based automated factory operation in an augmented reality environment. Sci. Rep. 6, 27380 (2016)

    Article  Google Scholar 

  27. Girbacia, F., Duguleana, M., Stavar, A.: Off-line programming of industrial robots using co-located environments. AMR 463–464, 1654–1657 (2012)

    Article  Google Scholar 

  28. Bischoff, R., Kazi, A.: Perspectives on augmented reality based human-robot interaction with industrial robots. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robotics and Systems. IROS 2004, Sendai, Japan, pp. 3226–3231 (2004)

    Google Scholar 

  29. Fogal, D., Rauschecker, U., Lanctot, P., et al.: Factory of the future. White paper. International Electrotechnical Commission, Geneva (2015)

    Google Scholar 

  30. Liu, H., Wang, L. (eds.): An AR-based worker support system for human-robot collaboration. In: 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2017, Modena (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Kutia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krot, K., Kutia, V. (2019). Intuitive Methods of Industrial Robot Programming in Advanced Manufacturing Systems. In: Burduk, A., Chlebus, E., Nowakowski, T., Tubis, A. (eds) Intelligent Systems in Production Engineering and Maintenance. ISPEM 2018. Advances in Intelligent Systems and Computing, vol 835. Springer, Cham. https://doi.org/10.1007/978-3-319-97490-3_20

Download citation

Publish with us

Policies and ethics