Skip to main content

Application of Genetic Algorithm for Solving Bilevel Linear Programming Problems

  • Chapter
  • First Online:
Bioinspired Heuristics for Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 774))

Abstract

Bilevel linear programming problem is a special class of nonconvex optimization problems which involves two levels with a hierarchical organization structure. In this paper, we present a genetic algorithm (GA) based approach to solve the bilevel linear programming (BLP) problem. The efficiency of this approach is confirmed by comparing the results with Kuo and Han’s method HGAPSO consisting of a hybrid of GA and particle swarm optimization algorithm (PSO) in Kuo and Han (Applied Mathematical Modelling 35:3905–3917, 2011, [15]) using four problems in the literature and an example of supply chain model. These results show that the proposed approach provides the optimal solution and outperforms HGAPSO for most test problems adopted from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An optimization modeling software.

References

  1. Ait Laamim, M., Makrizi, A., & Essoufi, E. H. (2017) Genetic algorithm for solving a linear bilevel program. In 5th International Congress of the SM2A, March 16–18, 2017, Meknes, Morocco.

    Google Scholar 

  2. Bard, J. (1984). Optimality conditions for the bilevel programming problem. Naval Research Logistics, 31, 13–26.

    Article  MathSciNet  Google Scholar 

  3. Bard, J. (1991). Some properties of the bilevel programming problem. Journal of Optimization Theory and Applications, 68, 371–378.

    Article  MathSciNet  Google Scholar 

  4. Bard, J. (1998). Practical bilevel optimization. algorithms and applications. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  5. Bard, J. F., & Falk, J. E. (1982). An explicit solution to the multi-level programming problem. Computers and Operations Research, 9, 77–100.

    Article  MathSciNet  Google Scholar 

  6. Ben-Ayed, O., & Blair, C. E. (1990). Computational difficulties of bilevel linear programming. Operations Research, 38, 556–560.

    Article  MathSciNet  Google Scholar 

  7. Ben-Ayed, O., Boyce, D. E., & Blair, C. E. (1988). A general bilevel linear programming formulation of the network design problem. Transportation Research, 22, 311–318.

    Article  MathSciNet  Google Scholar 

  8. Bracken, J., & McGill, J. (1973). Mathematical programs with optimization problems in the constraints. Operations Research, 21, 37–44.

    Article  MathSciNet  Google Scholar 

  9. Calvete, H. I., Galé, C., & Mateo, P. M. (2008). A new approach for solving linear bilevel problems using genetic algorithms. European Journal of Operational Research, 188, 14–28.

    Article  MathSciNet  Google Scholar 

  10. Dempe, S. (2002). Foundations of bilevel programming. Boston: Kluwer Academic Publishers.

    MATH  Google Scholar 

  11. Gendreau, M., Marcotte, P., & Savard, G. (1996). A hybrid tabu-ascent algorithm for the linear bilevel programming problem. Journal of Global Optimization8, 217–233.

    Google Scholar 

  12. Goldberg, D. (2002). The design of innovation: lessons from and for competent genetic algorithms. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  13. Hansen, P., Jaumard, B., & Savard, G. (1992). New branch-and-bound rules for linear bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13, 1194–1217.

    Article  MathSciNet  Google Scholar 

  14. Hejazi, S. R., Memarian, A., Jahanshahloo, G., & Sepehri, M. M. (2002). Linear bi-level programming solution by genetic algorithm. Computers and Operations Research, 29, 1913–1925.

    Article  MathSciNet  Google Scholar 

  15. Kuo, R. J., Han, Y. S. (2011). A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem - A case study on supply chain model. Applied Mathematical Modelling 35, 3905–3917.

    Google Scholar 

  16. Mathieu, R., Pittard, L., & Anandalingam, G. (1994). Genetic algorithm based approach to bi-level linear programming. Operations Research, 28, 1–21.

    Google Scholar 

  17. Michalewicz, Z. (1996). Genetic algorithms \(+\) data structures \(=\) evolution programs (3rd ed.). Berlin: Springer.

    Google Scholar 

  18. Sahin, K. H., & Ciric, A. R. (1998). A dual temperature simulated annealing approach for solving bilevel programming problems. Computers and chemical engineering, 23, 11–25.

    Article  Google Scholar 

  19. Simaan, M., & Cruz, J. P. (1973). On the Stackelberg strategy in nonzero-sum games. Journal of Optimization Theory and Applications, 11, 533–555.

    Article  MathSciNet  Google Scholar 

  20. Stackelberg, H. (1952). The theory of the market economy. Oxford: Oxford University Press.

    Google Scholar 

  21. Talbi, E. G. (2013). A taxonomy of metaheuristics for bi-level optimization. Metaheuristics for bi-level optimization (Vol. 482, pp. 1–39). Berlin: Springer.

    Chapter  Google Scholar 

  22. Wang, G. M., Wang, X. J., Wan, Z. P., & Chen, Y. L. (2005). Genetic algorithms for solving linear bilevel programming. In Proceedings of the Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT’05). China: IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ait Laamim .

Editor information

Editors and Affiliations

Appendix

Appendix

Test problem 1

$$\begin{aligned} \begin{array}{lcl} \displaystyle \max _{x_{1}} \; F=-2x_{1}+11x_{2}\\ where \; x_{2}\; solves \\ \displaystyle \max _{x_{2}} \; f=-x_{1}-3x_{2} \\ \displaystyle \textit{s.t.} \quad x_{1}-2x_{2} \le 4 \\ \qquad 2x_{1}-x_{2} \le 24 \\ \qquad 3x_{1}+4x_{2} \le 96 \\ \qquad x_{1}+7x_{2} \le 126 \\ \qquad -4x_{1}+5x_{2} \le 65 \\ \qquad x_{1}+4x_{2} \ge 8 \\ \qquad x_{1},x_{2} \ge 0. \end{array} \end{aligned}$$
(8.8)

Test problem 2

$$\begin{aligned} \begin{array}{lcl} \displaystyle \max _{x_{1}} \; F=x_{2} \\ where \; x_{2}\; solves \\ \displaystyle \max _{x_{2}} \; f=-x_{2} \\ \displaystyle \textit{s.t.} \; -x_{1}-2x_{2} \le 10 \\ \qquad x_{1}-2x_{2} \le 6 \\ \qquad 2x_{1}-x_{2} \le 21 \\ \qquad x_{1}+2x_{2} \le 38 \\ \qquad -x_{1}+2x_{2} \le 18 \\ \qquad x_{1}, x_{2} \ge 0. \end{array} \end{aligned}$$
(8.9)

Test problem 3

$$\begin{aligned} \begin{array}{lcl} \displaystyle \max _{x_{1}} \; F=x_{1}+3x_{2} \\ where \; x_{2}\; solves \\ \displaystyle \max _{x_{2}} \; f=-x_{2} \\ \displaystyle \textit{s.t.} \; -x_{1}+x_{2} \le 3 \\ \qquad x_{1}+2x_{2} \le 12 \\ \qquad 4x_{1}-x_{2} \le 12 \\ \qquad x_{1}, x_{2} \ge 0. \end{array} \end{aligned}$$
(8.10)

Test problem 4

$$\begin{aligned} \begin{array}{lcl} \displaystyle \max _{x} \; F=8x_{1}+4x_{2}-4y_{1}+40y_{2}-4y_{3} \\ where \; y\; solves \\ \displaystyle \max _{y} \; f=-x_{1}-2x_{2}-y_{1}-y_{2}-2y_{3} \\ \displaystyle \textit{s.t.} \qquad y_{1}-y_{2}-y_{3} \ge -1 \\ \qquad -2x_{1}+y_{1}-2y_{2}+0.5y_{3}\ge -1 \\ \qquad -2x_{2}-2y_{1}+y_{2}+0.5y_{3}\ge -1 \\ \qquad \quad x_{1}, x_{2}, y_{1}, y_{2}, y_{3}\ge 0 \end{array} \end{aligned}$$
(8.11)

Test problem 5

$$\begin{aligned} \begin{array}{lcl} \displaystyle \max _{x_{1}}\; F=-x_{1}-x_{2} \\ where \; x_{2}\; solves \\ \displaystyle \max _{x_{2}} \; f=5x_{1}+x_{2} \\ \displaystyle \textit{s.t.}\quad -x_{1}- \frac{x_{2}}{2} \le -2 \\ \qquad -\frac{x_{1}}{4}+x_{2} \le 2 \\ \qquad \quad x_{1}+\frac{x_{2}}{2} \le 8 \\ \qquad \quad x_{1}-2x_{2} \le 4 \\ \qquad \quad \quad x_{1}, x_{2} \ge 0 \end{array} \end{aligned}$$
(8.12)

Test problem 6

$$\begin{aligned} \begin{array}{lcl} \displaystyle \max _{x}\; F=2x_{1}-x_{2}+0.5y_{1} \\ where \; y\; solves \\ \displaystyle \max _{y} \; f=-x_{1}-x_{2}+4y_{1}-y_{2} \\ \displaystyle \textit{s.t.}\quad 2x_{1}-y_{1}+y_{2}\ge 2.5 \\ \qquad -x_{1}+3x_{2}-y_{2} \ge -2 \\ \qquad -x_{1}-x_{2} \ge -2 \\ \qquad \quad \quad x, y \ge 0 \end{array} \end{aligned}$$
(8.13)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ait Laamim, M., Makrizi, A., Essoufi, E.H. (2019). Application of Genetic Algorithm for Solving Bilevel Linear Programming Problems. In: Talbi, EG., Nakib, A. (eds) Bioinspired Heuristics for Optimization. Studies in Computational Intelligence, vol 774. Springer, Cham. https://doi.org/10.1007/978-3-319-95104-1_8

Download citation

Publish with us

Policies and ethics