Skip to main content

Challenging the Therapy/Enhancement Distinction in CRISPR Gene Editing

  • Chapter
  • First Online:
The Palgrave Handbook of Philosophy and Public Policy

Abstract

CRISPR science enables genomic engineering that has major implications in disease prevention and therapy, but also in various non-human applications. Despite CRISPR’s great potential, there are major scientific concerns that must be further investigated: off-target effects, chimerism, unknown epigenetic effects, and long term on-target effects. Moreover, there are also social justice concerns regarding the democratization of CRISPR technology due to its highly pragmatic and executable nature. This makes policy development to regulate CRISPR very challenging. Historically in the United States, genomic engineering policy has been under the FDA’s jurisdiction. However, multiple institutional committees have reported guidelines on CRISPR policy, including transnational collaborations that also respect cultural contextual differences. The FDA and institutional guidelines share a common prescription to allow CRISPR editing for therapeutic purposes only and not for enhancement. Unfortunately, the very notions of therapy and enhancements are unclear, because they depend on one’s notion of nature and what normal means. Understanding of the baseline “normal” as a statistical average overcomes the need to unify various philosophical views on “nature”. Moreover, the medical statistical view of “normal”, “disease”, integrates personal safety issues with communal equity social justice considerations. In conclusion, regulations development of CRISPR editing requires not only additional scientific research but also a rethinking of the notion of “normal” in relation to equity and access.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • 2017. The Future of Human Genome Editing. Nature Genetics 49 (5): 653. doi: https://doi.org/10.1038/ng.3860.

  • ACMG Board of Directors. 2017. Genome Editing in Clinical Genetics: Points to Consider-a Statement of the American College of Medical Genetics and Genomics. Genetics in Medicine 19 (7): 723–724. https://doi.org/10.1038/gim.2016.195.

    Article  Google Scholar 

  • Alper, J.S. 1996. Genetic Complexity in Single Gene Diseases. BMJ 312 (7025): 196–197.

    Article  Google Scholar 

  • Anderson, W.F. 1992. The June RAC Meeting. Human Gene Therapy 3 (5): 459–460. https://doi.org/10.1089/hum.1992.3.5-459.

    Article  Google Scholar 

  • Barrangou, R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D.A. Romero, and P. Horvath. 2007. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 315 (5819): 1709–1712. https://doi.org/10.1126/science.1138140.

    Article  Google Scholar 

  • Bosley, K.S., M. Botchan, A.L. Bredenoord, D. Carroll, R.A. Charo, E. Charpentier, R. Cohen, J. Corn, J. Doudna, G. Feng, H.T. Greely, R. Isasi, W. Ji, J.S. Kim, B. Knoppers, E. Lanphier, J. Li, R. Lovell-Badge, G.S. Martin, J. Moreno, L. Naldini, M. Pera, A.C. Perry, J.C. Venter, F. Zhang, and Q. Zhou. 2015. CRISPR Germline Engineering--the Community Speaks. Nature Biotechnology 33 (5): 478–486. https://doi.org/10.1038/nbt.3227.

    Article  Google Scholar 

  • Boyd, K.M. 2000. Disease, Illness, Sickness, Health, Healing and Wholeness: Exploring Some Elusive Concepts. Medical Humanities 26 (1): 9–17.

    Article  Google Scholar 

  • Carbon, J., T.E. Shenk, and P. Berg. 1975. Construction in Vitro of Mutants of Simian Virus 40: Insertion of a Poly(dA-dT) Segment at the Hemophilus Parainfluenza II Restriction Endonuclease Cleavage Site. Journal of Molecular Biology 98 (1): 1–15.

    Article  Google Scholar 

  • Coates, Peter A. 1998. Nature: Western Attitudes Since Ancient Times. Berkeley: University of California Press.

    Google Scholar 

  • Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini, and F. Zhang. 2013. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339 (6121): 819–823. https://doi.org/10.1126/science.1231143.

    Article  Google Scholar 

  • Crawford, M. 1987. RAC Recommends Easing Some Recombinant DNA Guidelines. Science 235 (4790): 740–741.

    Article  Google Scholar 

  • Cyranoski, D. 2015. Gene-edited ‘Micropigs’ to be Sold as Pets at Chinese Institute. Nature 526 (7571): 18. https://doi.org/10.1038/nature.2015.18448.

    Article  Google Scholar 

  • de Lecuona, I., M. Casado, G. Marfany, M. Lopez Baroni, and M. Escarrabill. 2017. Gene Editing in Humans: Towards a Global and Inclusive Debate for Responsible Research. The Yale Journal of Biology and Medicine 90 (4): 673–681.

    Google Scholar 

  • Deveau, H., R. Barrangou, J.E. Garneau, J. Labonte, C. Fremaux, P. Boyaval, D.A. Romero, P. Horvath, and S. Moineau. 2008. Phage Response to CRISPR-encoded Resistance in Streptococcus thermophilus. Journal of Bacteriology 190 (4): 1390–1400. https://doi.org/10.1128/JB.01412-07.

    Article  Google Scholar 

  • Dhanapala, P., T. Doran, M.L. Tang, and C. Suphioglu. 2015. Production and Immunological Analysis of IgE Reactive Recombinant Egg White Allergens Expressed in Escherichia coli. Molecular Immunology 65 (1): 104–112. https://doi.org/10.1016/j.molimm.2015.01.006.

    Article  Google Scholar 

  • Ethics, Standards. 2001. Genethics. Gene Therapy or Genetic Enhancement: Does it Make a Difference? Virtual Mentor:E5.

    Google Scholar 

  • Fears, R., and V. Ter Meulen. 2017. How Should the Applications of Genome Editing be Assessed and Regulated? eLife 6. https://doi.org/10.7554/eLife.26295.

  • Goff, S.P., and P. Berg. 1976. Construction of Hybrid Viruses Containing SV40 and Lambda Phage DNA Segments and their Propagation in Cultured Monkey Cells. Cell 9 (4 PT 2): 695–705.

    Article  Google Scholar 

  • Gottweis, H. 2005. Regulating Genomics in the 21st Century: From Logos to Pathos? Trends in Biotechnology 23 (3): 118–121. https://doi.org/10.1016/j.tibtech.2005.01.002.

    Article  Google Scholar 

  • Grant, E.V. 2016. FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology. Food and Drug Law Journal 71 (4): 608–633.

    Google Scholar 

  • Guo, R., H. Wang, J. Cui, G. Wang, W. Li, and J.F. Hu. 2015. Inhibition of HIV-1 Viral Infection by an Engineered CRISPR Csy4 RNA Endoribonuclease. PLoS One 10 (10): e0141335. https://doi.org/10.1371/journal.pone.0141335.

    Article  Google Scholar 

  • Horvath, P., D.A. Romero, A.C. Coute-Monvoisin, M. Richards, H. Deveau, S. Moineau, P. Boyaval, C. Fremaux, and R. Barrangou. 2008. Diversity, Activity, and Evolution of CRISPR loci in Streptococcus thermophilus. Journal of Bacteriology 190 (4): 1401–1412. https://doi.org/10.1128/JB.01415-07.

    Article  Google Scholar 

  • Hu, W., R. Kaminski, F. Yang, Y. Zhang, L. Cosentino, F. Li, B. Luo, D. Alvarez-Carbonell, Y. Garcia-Mesa, J. Karn, X. Mo, and K. Khalili. 2014. RNA-Directed Gene Editing Specifically Eradicates Latent and Prevents New HIV-1 Infection. Proceedings of the National Academy of Sciences of the United States of America 111 (31): 11461–11466. https://doi.org/10.1073/pnas.1405186111.

    Article  Google Scholar 

  • Hutter, G., J. Bodor, S. Ledger, M. Boyd, M. Millington, M. Tsie, and G. Symonds. 2015. CCR5 Targeted Cell Therapy for HIV and Prevention of Viral Escape. Viruses 7 (8): 4186–4203. https://doi.org/10.3390/v7082816.

    Article  Google Scholar 

  • Ishino, Y., H. Shinagawa, K. Makino, M. Amemura, and A. Nakata. 1987. Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia coli, and Identification of the Gene Product. Journal of Bacteriology 169 (12): 5429–5433.

    Article  Google Scholar 

  • Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna, and E. Charpentier. 2012. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337 (6096): 816–821. https://doi.org/10.1126/science.1225829.

    Article  Google Scholar 

  • Jinek, M., A. East, A. Cheng, S. Lin, E. Ma, and J. Doudna. 2013. RNA-Programmed Genome Editing in Human Cells. eLife 2: e00471. https://doi.org/10.7554/eLife.00471.

    Article  Google Scholar 

  • Juarrero, Alicia. 1999. Dynamics in Action: Intentional Behavior as a Complex System. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kaminski, R., Y. Chen, T. Fischer, E. Tedaldi, A. Napoli, Y. Zhang, J. Karn, W. Hu, and K. Khalili. 2016a. Corrigendum: Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Scientific Reports 6: 28213. https://doi.org/10.1038/srep28213.

    Article  Google Scholar 

  • ———. 2016b. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Scientific Reports 6: 22555. https://doi.org/10.1038/srep22555.

    Article  Google Scholar 

  • Kosuri, S., N. Eroshenko, E.M. Leproust, M. Super, J. Way, J.B. Li, and G.M. Church. 2010. Scalable Gene Synthesis by Selective Amplification of DNA Pools from High-Fidelity Microchips. Nature Biotechnology 28 (12): 1295–1299. https://doi.org/10.1038/nbt.1716.

    Article  Google Scholar 

  • Lagay, F. 2001. Gene Therapy or Genetic Enhancement: Does It Make a Difference? Virtual Mentor 3 (2). https://doi.org/10.1001/virtualmentor.2001.3.2.gnth1-0102.

  • Ledford, H. 2015a. Biohackers Gear Up for Genome Editing. Nature 524 (7566): 398–399. https://doi.org/10.1038/524398a.

    Article  Google Scholar 

  • ———. 2015b. CRISPR, the Disruptor. Nature 522 (7554): 20–24. https://doi.org/10.1038/522020a.

    Article  Google Scholar 

  • Liang, P., Y. Xu, X. Zhang, C. Ding, R. Huang, Z. Zhang, J. Lv, X. Xie, Y. Chen, Y. Li, Y. Sun, Y. Bai, Z. Songyang, W. Ma, C. Zhou, and J. Huang. 2015. CRISPR/Cas9-mediated Gene Editing in Human Tripronuclear Zygotes. Protein & Cell 6 (5): 363–372. https://doi.org/10.1007/s13238-015-0153-5.

    Article  Google Scholar 

  • Lillico, S.G., C. Proudfoot, T.J. King, W. Tan, L. Zhang, R. Mardjuki, D.E. Paschon, E.J. Rebar, F.D. Urnov, A.J. Mileham, D.G. McLaren, and C.B. Whitelaw. 2016. Mammalian Interspecies Substitution of Immune Modulatory Alleles by Genome Editing. Scientific Reports 6: 21645. https://doi.org/10.1038/srep21645.

    Article  Google Scholar 

  • Long, C., J.R. McAnally, J.M. Shelton, A.A. Mireault, R. Bassel-Duby, and E.N. Olson. 2014. Prevention of Muscular Dystrophy in Mice by CRISPR/Cas9-Mediated Editing of Germline DNA. Science 345 (6201): 1184–1188. https://doi.org/10.1126/science.1254445.

    Article  Google Scholar 

  • Lustig, B.A., B.A. Brody, and G.P. McKenny. 2008. Altering Nature, 2 vols, Philosophy and Medicine. Dordrecht: Springer.

    Google Scholar 

  • Mali, P., K.M. Esvelt, and G.M. Church. 2013a. Cas9 as a Versatile Tool for Engineering Biology. Nature Methods 10 (10): 957–963. https://doi.org/10.1038/nmeth.2649.

    Article  Google Scholar 

  • Mali, P., L. Yang, K.M. Esvelt, J. Aach, M. Guell, J.E. DiCarlo, J.E. Norville, and G.M. Church. 2013b. RNA-guided Human Genome Engineering via Cas9. Science 339 (6121): 823–826. https://doi.org/10.1126/science.1232033.

    Article  Google Scholar 

  • Merrill, R.A., and B.J. Rose. 2001. FDA Regulation of Human Cloning: Usurpation or Statesmanship? Harvard Journal of Law & Technology 15 (1): 85–148.

    Google Scholar 

  • Mojica, F.J., C. Ferrer, G. Juez, and F. Rodriguez-Valera. 1995. Long Stretches of Short Tandem Repeats are Present in the Largest Replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and Could Be Involved in Replicon Partitioning. Molecular Microbiology 17 (1): 85–93.

    Article  Google Scholar 

  • Morison, Benjamin. 2002. On Location: Aristotle’s Concept of Place, Oxford Aristotle Studies. New York: Oxford University Press.

    Book  Google Scholar 

  • Mulligan, R.C., B.H. Howard, and P. Berg. 1979. Synthesis of Rabbit Beta-Globin in Cultured Monkey Kidney Cells Following Infection with a SV40 Beta-Globin Recombinant Genome. Nature 277 (5692): 108–114.

    Article  Google Scholar 

  • Oye, K.A., and K.M. Esvelt. 2014. Gene Drives Raise Dual-Use Concerns – Response. Science 345 (6200): 1010–1011. https://doi.org/10.1126/science.345.6200.1010-c.

    Article  Google Scholar 

  • Oye, K.A., K. Esvelt, E. Appleton, F. Catteruccia, G. Church, T. Kuiken, S.B. Lightfoot, J. McNamara, A. Smidler, and J.P. Collins. 2014. Biotechnology. Regulating Gene Drives. Science 345 (6197): 626–628. https://doi.org/10.1126/science.1254287.

    Article  Google Scholar 

  • Rainsbury, J.M. 2000. Biotechnology on the RAC: FDA/NIH Regulation of Human Gene Therapy. Food and Drug Law Journal 55 (4): 575–600.

    Google Scholar 

  • Rosenberg, Alexander. 2012. Philosophy of Science: A Contemporary Introduction, Routledge Contemporary Introductions to Philosophy. 3rd ed. New York: Routledge.

    Google Scholar 

  • Sampson, T.R., and D.S. Weiss. 2013. Cas9-dependent Endogenous Gene Regulation is Required for Bacterial Virulence. Biochemical Society Transactions 41 (6): 1407–1411. https://doi.org/10.1042/BST20130163.

    Article  Google Scholar 

  • Sampson, T.R., S.D. Saroj, A.C. Llewellyn, Y.L. Tzeng, and D.S. Weiss. 2013. A CRISPR/Cas System Mediates Bacterial Innate Immune Evasion and Virulence. Nature 497 (7448): 254–257. https://doi.org/10.1038/nature12048.

    Article  Google Scholar 

  • Sancho, M., and T.A. Rodriguez. 2014. Selecting for Fitness in Mammalian Development. Cell Cycle 13 (1): 9–10. https://doi.org/10.4161/cc.27026.

    Article  Google Scholar 

  • Sander, J.D., E.J. Dahlborg, M.J. Goodwin, L. Cade, F. Zhang, D. Cifuentes, S.J. Curtin, J.S. Blackburn, S. Thibodeau-Beganny, Y. Qi, C.J. Pierick, E. Hoffman, M.L. Maeder, C. Khayter, D. Reyon, D. Dobbs, D.M. Langenau, R.M. Stupar, A.J. Giraldez, D.F. Voytas, R.T. Peterson, J.R. Yeh, and J.K. Joung. 2011. Selection-Free Zinc-Finger-Nuclease Engineering by Context-Dependent Assembly (CoDA). Nature Methods 8 (1): 67–69. https://doi.org/10.1038/nmeth.1542.

    Article  Google Scholar 

  • Shaberman, B. 2017. A Retinal Research Nonprofit Paves the Way for Commercializing Gene Therapies. Human Gene Therapy 28 (12): 1118–1121. https://doi.org/10.1089/hum.2017.29058.bsh.

    Article  Google Scholar 

  • Shan, Q., Y. Wang, J. Li, and C. Gao. 2014. Genome Editing in Rice and Wheat Using the CRISPR/Cas System. Nature Protocols 9 (10): 2395–2410. https://doi.org/10.1038/nprot.2014.157.

    Article  Google Scholar 

  • Skyrms, Brian. 2012. From Zeno to Arbitrage: Essays on Quantity, Coherence, and Induction. 1st ed. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Sorek, R., C.M. Lawrence, and B. Wiedenheft. 2013. CRISPR-mediated Adaptive Immune Systems in Bacteria and Archaea. Annual Review of Biochemistry 82: 237–266. https://doi.org/10.1146/annurev-biochem-072911-172315.

    Article  Google Scholar 

  • Terns, M.P., and R.M. Terns. 2011. CRISPR-Based Adaptive Immune Systems. Current Opinion in Microbiology 14 (3): 321–327. https://doi.org/10.1016/j.mib.2011.03.005.

    Article  Google Scholar 

  • The Lancet. 2018. Editing the Human Genome: Balancing Safety and Regulation. Lancet 391 (10119): 402. https://doi.org/10.1016/S0140-6736(18)30153-3.

    Article  Google Scholar 

  • Tillich, P. 1961. The Meaning of Health. Perspectives in Biology and Medicine 5: 92–100.

    Article  Google Scholar 

  • Velazquez, A. 1997. Gene-Nutrient Interactions in Single-gene Defects and Polygenic Diseases: Methodologic Considerations. World Review of Nutrition and Dietetics 80: 145–164.

    Article  Google Scholar 

  • Villarreal, L.P., and P. Berg. 1977. Hybridization in Situ of SV40 Plaques: Detection of Recombinant SV40 Virus Carrying Specific Sequences of Nonviral DNA. Science 196 (4286): 183–185.

    Article  Google Scholar 

  • Weatherall, D.J. 2000. Single Gene Disorders or Complex Traits: Lessons from the Thalassaemias and Other Monogenic Diseases. BMJ 321 (7269): 1117–1120.

    Article  Google Scholar 

  • White, M.K., and K. Khalili. 2016. CRISPR/Cas9 and Cancer Targets: Future Possibilities and Present Challenges. Oncotarget 7 (11): 12305–12317. https://doi.org/10.18632/oncotarget.7104.

    Article  Google Scholar 

  • White, M.K., W. Hu, and K. Khalili. 2015. The CRISPR/Cas9 Genome Editing Methodology as a Weapon Against Human Viruses. Discovery Medicine 19 (105): 255–262.

    Google Scholar 

  • Whitworth, K.M., R.R. Rowland, C.L. Ewen, B.R. Trible, M.A. Kerrigan, A.G. Cino-Ozuna, M.S. Samuel, J.E. Lightner, D.G. McLaren, A.J. Mileham, K.D. Wells, and R.S. Prather. 2016. Gene-Edited Pigs are Protected from Porcine Reproductive and Respiratory Syndrome Virus. Nature Biotechnology 34 (1): 20–22. https://doi.org/10.1038/nbt.3434.

    Article  Google Scholar 

  • Willgoos, C. 2001. FDA Regulation: An Answer to the Questions of Human Cloning and Germline Gene Therapy. American Journal of Law & Medicine 27 (1): 101–124.

    Google Scholar 

  • Wilmut, I. 2003. Dolly-her Life and Legacy. Cloning and Stem Cells 5 (2): 99–100. https://doi.org/10.1089/153623003322234687.

    Article  Google Scholar 

  • Wollebo, H.S., A. Bellizzi, R. Kaminski, W. Hu, M.K. White, and K. Khalili. 2015. CRISPR/Cas9 System as an Agent for Eliminating Polyomavirus JC Infection. PLoS One 10 (9): e0136046. https://doi.org/10.1371/journal.pone.0136046.

    Article  Google Scholar 

  • Zhang, Y., C. Yin, T. Zhang, F. Li, W. Yang, R. Kaminski, P.R. Fagan, R. Putatunda, W.B. Young, K. Khalili, and W. Hu. 2015. CRISPR/gRNA-Directed Synergistic Activation Mediator (SAM) Induces Specific, Persistent and Robust Reactivation of the HIV-1 Latent Reservoirs. Scientific Reports 5: 16277. https://doi.org/10.1038/srep16277.

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful for the support of the Center for Theology and the Natural Sciences (CTNS), especially Dr. Ted Peters. Moreover, I am grateful for the valuable discussions with colleagues from CTNS, Harvard Divinity School Center for Science, Religion and Culture (SRC) and the Sinai and Synapses Fellowship at the National Jewish Center for Learning and Leadership (CLAL). Finally, I would like to thank Danielle Fumagalli for providing valuable feedback on multiple versions of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gouw, A.M. (2018). Challenging the Therapy/Enhancement Distinction in CRISPR Gene Editing. In: Boonin, D. (eds) The Palgrave Handbook of Philosophy and Public Policy. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-93907-0_38

Download citation

Publish with us

Policies and ethics