Skip to main content

Astrophysics and Space Instrumentation

  • Reference work entry
  • First Online:
Handbook of Particle Detection and Imaging
  • 3301 Accesses

Abstract

Instrumentation for particle and high-energy photon measurements in space must provide high levels of performance while meeting the severe constraints imposed by flight. Direct measurements are required spanning over 13 decades in energy and covering species ranging from photons to the heaviest nuclei in the periodic table. Indirect measurements increase the energy range by another five decades. Many of the detection techniques used are shared with accelerator instruments and other ground-based applications, but the implementation is often unique to space. This chapter sets the context for the required measurements and reviews representative instruments for direct measurements of photons and particles from 100 eV to 1015 eV and indirect measurements to over 1020 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn HS et al (2007) The cosmic ray energetics and mass (CREAM) instrument. Nucl Inst Methods Phys Res A 579:1034–1053

    Article  ADS  Google Scholar 

  • Akimov VV et al (1970) Measurements of the primary cosmic ray spectra in the 1011–1014 eV energy range from proton-1, 2, 3 satellites. Proceedings of the 11th international conference on cosmic rays, vol 1. Budapest, p 517

    Google Scholar 

  • Atwood WB et al (2009) The large area telescope on the fermi gamma-ray space telescope mission. Astrophys J 697:1071–1102

    Article  ADS  Google Scholar 

  • Barthelmy SD et al (2005) The burst alert telescope (BAT) on the SWIFT midex mission. Space Sci Rev 120:143–164

    Article  ADS  Google Scholar 

  • Bieber JW (1999) Antiprotons at solar maximum. Phys Rev Lett 83(4):674–677

    Article  ADS  Google Scholar 

  • Fisk LA (1971) Solar modulation of galactic cosmic rays. J Geophys Res 76:221–226

    Article  ADS  Google Scholar 

  • Gehrels N et al (2004) The swift gamma-ray burst mission. Astrophys J 611:1005–1020

    Article  ADS  Google Scholar 

  • Gehrels N, Ramirez-Ruiz E, Fox DB (2009) Gamma-ray bursts in the swift era. Annu Rev Astron Astrophys 47:567–617

    Article  ADS  Google Scholar 

  • Giacconi R et al (1962) Evidence for X rays from sources outside the solar system. Phys Rev Lett 9:439–443

    Article  ADS  Google Scholar 

  • Gorham PW et al (2009) New limits on the ultrahigh energy cosmic neutrino flux from the ANITA experim. Astropart Phys 32:10–41

    Article  ADS  Google Scholar 

  • Gruber DE et al (1996) The high energy X-ray timing experiment on XTE. Astron Astrophys Suppl Ser 120:641–644

    Google Scholar 

  • Guzik TG et al (2004) The ATIC long duration balloon project. Adv Space Res 33:1763–1770

    Article  ADS  Google Scholar 

  • Hoover S et al (2010) Observation of ultrahigh-energy cosmic rays with the ANITA balloon-borne radio interferometer. Phys Rev Lett 105:151101

    Article  ADS  Google Scholar 

  • Jahoda K et al (2006) Calibration of the Rossi X-ray timing explorer proportional counter array. Astrophys J Suppl Ser 163:401–423

    Article  ADS  Google Scholar 

  • Koglin JE et al (2005) NuSTAR hard X-ray optics. Proc SPIE 59000:59000X-1

    Google Scholar 

  • Kounine A et al (2010) Status of the AMS experiment. arXiv:1009.5349

    Google Scholar 

  • Levine AM et al (1996) First results from the all-sky monitor on the Rossi X-ray timing explorer. Astrophys J 469:L33–L36

    Article  ADS  Google Scholar 

  • Mason GM et al (1998) The ultra-low-energy isotope spectrometer (ULEIS) for the ACE spacecraft. Space Sci Rev 86:409–448

    Article  ADS  Google Scholar 

  • Mitchell JW et al (2004) The BESS program. Nucl Phys B Proc Suppl 134:31–38

    Article  ADS  Google Scholar 

  • Müller D et al (2004) Transition radiation detectors in particle astrophysics. Nucl Inst Methods Phys Res A 522:9

    Article  ADS  Google Scholar 

  • Nichol JR et al (2011) Radio detection of high-energy particles with the ANITA experiment. Nucl Inst Methods Phys Res A 626–627:S30–S35

    Article  Google Scholar 

  • Obermeier A (2011) A direct measurement of cosmic rays to very high energies: implications for galactic propagation and sources. PhD thesis, Radboud University, Nijmegen, The Netherland, ISBN 978-90-9025962-8

    Google Scholar 

  • Picozza P et al (2007) PAMELA a payload for antimatter matter exploration and light-nuclei astrophysics. Astropart Phys 27:296–315

    Article  ADS  Google Scholar 

  • Rauch BF et al (2009) Cosmic ray origin in OB associations and preferential acceleration of refractory elements: evidence from abundances of elements 26Fe through 34Se. Astrophys J 697:2083–2088

    Article  ADS  Google Scholar 

  • Stecker FW et al (2004) Observing the ultrahigh energy universe with OWL eyes. Nucl Phys B 136C:433–438

    Article  ADS  Google Scholar 

  • Stephens SA, Balasubrahmanyan VK (1985) High energy gamma ray observatories for the study of cosmic ray electrons above 1014 eV. Nucl Inst Methods Phys Res A 241:257–264

    Article  ADS  Google Scholar 

  • Stone EC et al (1998a) The advanced composition explorer. Space Sci Rev 86:1–22

    Article  ADS  Google Scholar 

  • Stone EC et al (1998b) The solar isotope spectrometer for the advanced composition explorer. Space Sci Rev 86:357–408

    Article  ADS  Google Scholar 

  • Stone EC et al (1998c) The cosmic-ray isotope spectrometer for the advanced composition explorer. Space Sci Rev 86:285–356

    Article  ADS  Google Scholar 

  • Strong AW, Moskalenko IV, Ptuskin VS (2007) Cosmic-ray propagation and interactions in the galaxy. Ann Rev Nucl Part Sci 57:285–327

    Article  ADS  Google Scholar 

  • Takahashi Y et al (2009) The JEM-EUSO mission. New J Phys 11:065009

    Article  Google Scholar 

  • Torii S et al (2011) Calorimetric electron telescope mission. Search for dark matter and nearby sources. Nucl Inst Methods Phys Res A 630:55–57

    Article  ADS  Google Scholar 

  • Yamamoto A et al (2011) Search for cosmic-ray antiproton origins and for cosmological antimatter with BESS. Adv Space Res. (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mitchell, J.W., Hams, T. (2021). Astrophysics and Space Instrumentation. In: Fleck, I., Titov, M., Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-93785-4_23

Download citation

Publish with us

Policies and ethics