Skip to main content

Incremental Peritoneal and Hemodialysis

  • Living reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis

Abstract

Incremental dialysis (IncrD) is the practice of individualized dosing of renal replacement therapy (RRT) based on, and as a supplement to, residual kidney function (RKF). IncrD has been implemented in both peritoneal dialysis (PD) and hemodialysis (HD), more commonly in home HD than in-center HD, and offers several patient-centered and system-based advantages over a fixed dialysis prescription. The “dose” of IncrD must be routinely readjusted based on changes in the RKF and clinical conditions. On the other hand, a fixed dialysis prescription does not take RKF into consideration and is aimed to achieve a predetermined standard dialysis-only solute removal target. While IncrD offers potential benefits including preservation of RKF, lifestyle flexibility, and decreased dialysis-associated costs, certain ambiguous challenges arise. These include the monitoring and titrating of an individualized dialysis dose prescription. Also, potential uncertainties are the patient, family, and staff understanding and expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Garofalo C, Borrelli S, De Stefano T, Provenzano M, Andreucci M, Cabiddu G, et al. Incremental dialysis in ESRD: systematic review and meta-analysis. J Nephrol. 2019;32:823.

    Article  PubMed  Google Scholar 

  2. Rhee CM, Obi Y, Mathew AT, Kalantar-Zadeh K. Precision medicine in the transition to dialysis and personalized renal replacement therapy. Semin Nephrol. 2018;38(4):325–35.

    Article  PubMed  Google Scholar 

  3. Gotch FA. The current place of urea kinetic modelling with respect to different dialysis modalities. Nephrol Dial Transpl. 1998;13(Suppl 6):10–4.

    Article  CAS  Google Scholar 

  4. Leypoldt JK, Jaber BL, Zimmerman DL. Predicting treatment dose for novel therapies using urea standard Kt/V. Semin Dial. 2004;17(2):142–5.

    Article  PubMed  Google Scholar 

  5. Daugirdas JT, Depner TA, Greene T, Levin NW, Chertow GM, Rocco MV, et al. Standard Kt/Vurea: a method of calculation that includes effects of fluid removal and residual kidney clearance. Kidney Int. 2010;77(7):637–44.

    Article  PubMed  Google Scholar 

  6. KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015;66(5):884–930.

    Google Scholar 

  7. Wong J, Vilar E, Davenport A, Farrington K. Incremental haemodialysis. Nephrol Dial Transpl. 2015;30(10):1639–48.

    Article  Google Scholar 

  8. Clinical Practice Guideline for Hemodialysis: Update 2006. Am J Kidney Dis. 2006;48.

    Google Scholar 

  9. Sandrini M, Vizzardi V, Valerio F, Ravera S, Manili L, Zubani R, et al. Incremental peritoneal dialysis: a 10 year single-centre experience. J Nephrol. 2016;29(6):871–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ankawi GA, Woodcock NI, Jain AK, Garg AX, Blake PG. The use of incremental peritoneal dialysis in a large contemporary peritoneal dialysis program. Can J Kidney Health Dis. 2016;3:2054358116679131.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Maiorca R, Brunori G, Zubani R, Cancarini GC, Manili L, Camerini C, et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. A longitudinal study. Nephrol Dial Transpl. 1995;10(12):2295–305.

    Article  CAS  Google Scholar 

  12. Group C-UCPDS. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1996;7(2):198–207.

    Google Scholar 

  13. Davies SJ, Phillips L, Russell GI. Peritoneal solute transport predicts survival on CAPD independently of residual renal function. Nephrol Dial Transpl. 1998;13(4):962–8.

    Article  CAS  Google Scholar 

  14. Bargman JM, Thorpe KE, Churchill DN, Group CPDS. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12(10):2158–62.

    Article  PubMed  Google Scholar 

  15. Moist LM, Port FK, Orzol SM, Young EW, Ostbye T, Wolfe RA, et al. Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol. 2000;11(3):556–64.

    Article  PubMed  Google Scholar 

  16. Gedney N, Kalantar-Zadeh K. Dialysis patient-centeredness and precision medicine: focus on incremental home hemodialysis and preserving residual kidney function. Semin Nephrol. 2018;38(4):426–32.

    Article  PubMed  Google Scholar 

  17. Toth-Manikowski SM, Mullangi S, Hwang S, Shafi T. Incremental short daily home hemodialysis: a case series. BMC Nephrol. 2017;18(1):216.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deira J, Suarez MA, Lopez F, Garcia-Cabrera E, Gascon A, Torregrosa E, et al. IHDIP: a controlled randomized trial to assess the security and effectiveness of the incremental hemodialysis in incident patients. BMC Nephrol. 2019;20(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Obi Y, Streja E, Rhee CM, Ravel V, Amin AN, Cupisti A, et al. Incremental hemodialysis, residual kidney function, and mortality risk in incident dialysis patients: a cohort study. Am J Kidney Dis. 2016;68(2):256–65.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang M, Wang M, Li H, Yu P, Yuan L, Hao C, et al. Association of initial twice-weekly hemodialysis treatment with preservation of residual kidney function in ESRD patients. Am J Nephrol. 2014;40(2):140–50.

    Article  CAS  PubMed  Google Scholar 

  21. Bonomini V, Feletti C, Scolari MP, Stefoni S. Benefits of early initiation of dialysis. Kidney Int Suppl. 1985;17:S57–9.

    CAS  PubMed  Google Scholar 

  22. Hanson JA, Hulbert-Shearon TE, Ojo AO, Port FK, Wolfe RA, Agodoa LY, et al. Prescription of twice-weekly hemodialysis in the USA. Am J Nephrol. 1999;19(6):625–33.

    Article  CAS  PubMed  Google Scholar 

  23. Mathew A, Obi Y, Rhee CM, Chen JL, Shah G, Lau WL, et al. Treatment frequency and mortality among incident hemodialysis patients in the United States comparing incremental with standard and more frequent dialysis. Kidney Int. 2016;90(5):1071–9.

    Article  PubMed  Google Scholar 

  24. Cooper BA, Branley P, Bulfone L, Collins JF, Craig JC, Fraenkel MB, et al. A randomized, controlled trial of early versus late initiation of dialysis. N Engl J Med. 2010;363(7):609–19.

    Article  CAS  PubMed  Google Scholar 

  25. US Renal Data System: Excerpts from the USRDS 2003 annual data report: atlas of end-stage renal disease in the United States. Am J Kidney Dis. 2003;42(Suppl 5):S1–230.

    Google Scholar 

  26. Manera KE, Johnson DW, Craig JC, Shen JI, Ruiz L, Wang AY, et al. Patient and caregiver priorities for outcomes in peritoneal dialysis: multinational nominal group technique study. Clin J Am Soc Nephrol. 2019;14(1):74–83.

    Article  PubMed  Google Scholar 

  27. Tong A, Manns B, Wang AYM, Hemmelgarn B, Wheeler DC, Gill J, et al. Implementing core outcomes in kidney disease: report of the Standardized Outcomes in Nephrology (SONG) implementation workshop. Kidney Int. 2018;94(6):1053–68.

    Google Scholar 

  28. Crews DC, Jaar BG, Plantinga LC, Kassem HS, Fink NE, Powe NR. Inpatient hemodialysis initiation: reasons, risk factors and outcomes. Nephron Clin Pract. 2010;114(1):c19–28.

    Article  PubMed  Google Scholar 

  29. Harris A, Cooper BA, Li JJ, Bulfone L, Branley P, Collins JF, et al. Cost-effectiveness of initiating dialysis early: a randomized controlled trial. Am J Kidney Dis. 2011;57(5):707–15.

    Article  PubMed  Google Scholar 

  30. Bargman JM. Timing of initiation of RRT and modality selection. Clin J Am Soc Nephrol. 2015;10(6):1072–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Foundation NK. KDOQI clinical practice guidelines and clinical practice recommendations for 2006 updates: hemodialysis adequacy, peritoneal dialysis adequacy and vascular access. Am J Kidney Dis. 2006;48:S1–322.

    Google Scholar 

  32. Korevaar JC, Jansen MA, Dekker FW, Jager KJ, Boeschoten EW, Krediet RT, et al. When to initiate dialysis: effect of proposed US guidelines on survival. Lancet. 2001;358(9287):1046–50.

    Article  CAS  PubMed  Google Scholar 

  33. Bonomini V, Vangelista A, Stefoni S. Early dialysis in renal substitutive programs. Kidney Int Suppl. 1978;8:S112–6.

    Google Scholar 

  34. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1996;7(2):198–207.

    Google Scholar 

  35. Evans M, Tettamanti G, Nyren O, Bellocco R, Fored CM, Elinder CG. No survival benefit from early-start dialysis in a population-based, inception cohort study of Swedish patients with chronic kidney disease. J Intern Med. 2011;269(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  36. Jungers P, Zingraff J, Albouze G, Chauveau P, Page B, Hannedouche T, et al. Late referral to maintenance dialysis: detrimental consequences. Nephrol Dial Transpl. 1993;8(10):1089–93.

    CAS  Google Scholar 

  37. Churchill DN. An evidence-based approach to earlier initiation of dialysis. Am J Kidney Dis. 1997;30(6):899–906.

    Article  CAS  PubMed  Google Scholar 

  38. Rosansky S, Glassock RJ, Clark WF. Early start of dialysis: a critical review. Clin J Am Soc Nephrol. 2011;6(5):1222–8.

    Article  PubMed  Google Scholar 

  39. Rosansky SJ, Eggers P, Jackson K, Glassock R, Clark WF. Early start of hemodialysis may be harmful. Arch Intern Med. 2011;171(5):396–403.

    PubMed  Google Scholar 

  40. Hakim RM, Lazarus JM. Initiation of dialysis. J Am Soc Nephrol. 1995;6(5):1319–28.

    Article  CAS  PubMed  Google Scholar 

  41. Agraharkar M, Martinez MA, Kuo YF, Ahuja TS. Hospitalization for initiation of maintenance hemodialysis. Nephron Clin Pract. 2004;97(2):c54–60.

    Article  PubMed  Google Scholar 

  42. Adaptation to nephron loss and mechanisms of progression in chronic kidney disease. In: Rector BA, editor. Brenner and rector’s the kidney, 10th ed. 2016.

    Google Scholar 

  43. Golper TA, Mehrotra R. The intact nephron hypothesis in reverse: an argument to support incremental dialysis. Nephrol Dial Transpl. 2015;30(10):1602–4.

    Article  Google Scholar 

  44. Lee MJ, Park JT, Park KS, Kwon YE, Oh HJ, Yoo TH, et al. Prognostic value of residual urine volume, GFR by 24-hour urine collection, and eGFR in patients receiving dialysis. Clin J Am Soc Nephrol. 2017;12(3):426–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McKane W, Chandna SM, Tattersall JE, Greenwood RN, Farrington K. Identical decline of residual renal function in high-flux biocompatible hemodialysis and CAPD. Kidney Int. 2002;61(1):256–65.

    Article  CAS  PubMed  Google Scholar 

  46. Teruel-Briones JL, Fernandez-Lucas M, Rivera-Gorrin M, Ruiz-Roso G, Diaz-Dominguez M, Rodriguez-Mendiola N, et al. Progression of residual renal function with an increase in dialysis: haemodialysis versus peritoneal dialysis. Nefrologia. 2013;33(5):640–9.

    PubMed  Google Scholar 

  47. Shafi T, Jaar BG, Plantinga LC, Fink NE, Sadler JH, Parekh RS, et al. Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE) Study. Am J Kidney Dis. 2010;56(2):348–58.

    Google Scholar 

  48. Vilar E, Wellsted D, Chandna SM, Greenwood RN, Farrington K. Residual renal function improves outcome in incremental haemodialysis despite reduced dialysis dose. Nephrol Dial Transpl. 2009;24(8):2502–10.

    Article  Google Scholar 

  49. Ken F. Commentary for ‘effect of frequent hemodialysis on residual kidney function’: Frequent Hemodialysis Network (FHN) Trials. Kidney Int. 2013;83:787–9.

    Google Scholar 

  50. Daugirdas JT, Greene T, Rocco MV, Kaysen GA, Depner TA, Levin NW, et al. Effect of frequent hemodialysis on residual kidney function. Kidney Int. 2013;83(5):949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kalantar-Zadeh K, Unruh M, Zager PG, Kovesdy CP, Bargman JM, Chen J, et al. Twice-weekly and incremental hemodialysis treatment for initiation of kidney replacement therapy. Am J Kidney Dis. 2014;64(2):181–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lin YF, Huang JW, Wu MS, Chu TS, Lin SL, Chen YM, et al. Comparison of residual renal function in patients undergoing twice-weekly versus three-times-weekly haemodialysis. Nephrology (Carlton). 2009;14(1):59–64.

    Article  CAS  Google Scholar 

  53. Morelli E, Baldi R, Barsotti G, Ciardella F, Cupisti A, Dani L, et al. Combined therapy for selected chronic uremic patients: infrequent hemodialysis and nutritional management. Nephron. 1987;47(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  54. Locatelli F, Andrulli S, Pontoriero G, Di Filippo S, Bigi MC. Supplemented low-protein diet and once-weekly hemodialysis. Am J Kidney Dis. 1994;24(2):192–204.

    Article  CAS  PubMed  Google Scholar 

  55. Caria S, Cupisti A, Sau G, Bolasco P. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol. 2014;15:172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bolasco P, Cupisti A, Locatelli F, Caria S, Kalantar-Zadeh K. Dietary Management of Incremental Transition to dialysis therapy: once-weekly hemodialysis combined with low-protein diet. J Ren Nutr. 2016;26(6):352–9.

    Article  PubMed  Google Scholar 

  57. K/DOQI, National Kidney Foundation. Clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2000;35(6 Suppl 2):S1–140.

    Google Scholar 

  58. Lutes R, Perlmutter J, Holley JL, Bernardini J, Piraino B. Loss of residual renal function in patients on peritoneal dialysis. Adv Perit Dial. 1993;9:165–8.

    CAS  PubMed  Google Scholar 

  59. Hufnagel G, Michel C, Queffeulou G, Skhiri H, Damieri H, Mignon F. The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transpl. 1999;14(5):1224–8.

    Article  CAS  Google Scholar 

  60. Singhal MK, Bhaskaran S, Vidgen E, Bargman JM, Vas SI, Oreopoulos DG. Rate of decline of residual renal function in patients on continuous peritoneal dialysis and factors affecting it. Perit Dial Int. 2000;20(4):429–38.

    Article  CAS  PubMed  Google Scholar 

  61. Jansen MA, Hart AA, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT, et al. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int. 2002;62(3):1046–53.

    Article  PubMed  Google Scholar 

  62. Misra M, Vonesh E, Van Stone JC, Moore HL, Prowant B, Nolph KD. Effect of cause and time of dropout on the residual GFR: a comparative analysis of the decline of GFR on dialysis. Kidney Int. 2001;59(2):754–63.

    Article  CAS  PubMed  Google Scholar 

  63. Diao Z, Zhang D, Dai W, Ding J, Zhang A, Liu W. Preservation of residual renal function with limited water removal in hemodialysis patients. Ren Fail. 2011;33(9):875–7.

    Article  CAS  PubMed  Google Scholar 

  64. NKF-DOQI Clinical practice guidelines for peritoneal dialysis adequacy. New York, National Kidney Foundation, 1997, pp 104.

    Google Scholar 

  65. NKF-DOQI clinical practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis. 1997;30(3):S67–136.

    Google Scholar 

  66. CMS.gov. CMS regulations and guidance: CMS manual system medicare claims processing centers for medicare and medicaid services. Available from https://www.cms.gov/Regulations-and-Guidance/Guidance/Transmittals/downloads/R2361CP.pdf. Accessed 25 Nov 2011.

  67. Smart NA, Titus TT. Outcomes of early versus late nephrology referral in chronic kidney disease: a systematic review. Am J Med. 2011;124(11):1073–80. e2

    Article  PubMed  Google Scholar 

  68. Metcalfe W, Khan IH, Prescott GJ, Simpson K, MacLeod AM. Can we improve early mortality in patients receiving renal replacement therapy? Kidney Int. 2000;57(6):2539–45.

    Article  CAS  PubMed  Google Scholar 

  69. Bowman B, Zheng S, Yang A, Schiller B, Morfin JA, Seek M, et al. Improving incident ESRD care via a transitional care unit. Am J Kidney Dis. 2018;72(2):278–83.

    Article  PubMed  Google Scholar 

  70. Nakai S, Hanafusa N, Masakane I, Taniguchi M, Hamano T, Shoji T, et al. An overview of regular dialysis treatment in Japan (as of 31 December 2012). Ther Apher Dial. 2014;18(6):535–602.

    Article  PubMed  Google Scholar 

  71. Kawanishi H, Moriishi M, Katsutani S, Sakikubo E, Tsuchiya S. Hemodialysis together with peritoneal dialysis is one of the simplest ways to maintain adequacy in continuous ambulatory peritoneal dialysis. Adv Perit Dial. 1999;15:127–31.

    CAS  PubMed  Google Scholar 

  72. Yu ZL, Seow YY, Seow PS, Tan BL. Effectiveness of a day care program in supporting patients on peritoneal dialysis and their caregivers. Int Urol Nephrol. 2016;48(5):799–805.

    Article  PubMed  Google Scholar 

  73. Castrale C, Evans D, Verger C, Fabre E, Aguilera D, Ryckelynck JP, et al. Peritoneal dialysis in elderly patients: report from the French Peritoneal Dialysis Registry (RDPLF). Nephrol Dial Transpl. 2010;25(1):255–62.

    Article  Google Scholar 

  74. Povlsen JV, Ivarsen P. Assisted peritoneal dialysis: also for the late referred elderly patient. Perit Dial Int. 2008;28(5):461–7.

    Article  PubMed  Google Scholar 

  75. Lobbedez T, Verger C, Ryckelynck JP, Fabre E, Evans D. Is assisted peritoneal dialysis associated with technique survival when competing events are considered? Clin J Am Soc Nephrol. 2012;7(4):612–8.

    Article  PubMed  Google Scholar 

  76. Oliver MJ, Quinn RR, Richardson EP, Kiss AJ, Lamping DL, Manns BJ. Home care assistance and the utilization of peritoneal dialysis. Kidney Int. 2007;71(7):673–8.

    Article  CAS  PubMed  Google Scholar 

  77. Bevilacqua MU, Turnbull L, Saunders S, Er L, Chiu H, Hill P, et al. Evaluation of a 12-month pilot of long-term and temporary assisted peritoneal dialysis. Perit Dial Int. 2017;37(3):307–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafia I. Chaudhry .

Editor information

Editors and Affiliations

Glossary

APD

Automated peritoneal dialysis

CAPD

Continuous ambulatory peritoneal dialysis

Ccreat

Creatinine clearance

Curea

Urea clearance

ESRD

End-stage renal disease

GFR

Glomerular filtration rate

IDEAL

The Initiation of Dialysis of Early and Late Trial

IncrD

Incremental dialysis

KDOQI

Kidney Disease Outcomes Qualitative Initiative

Kru

Residual kidney function urea clearance

Kt/Vurea

Urea clearance times time/volume of distribution of urea (total body water)

NECOSAD

Netherlands Cooperative Study on the Adequacy of Dialysis

PDA

Peritoneal dialysis assist

RCT

Randomized controlled trial

RKF

Residual kidney function

RRT

Renal replacement therapy

UO

Urine Output

USRDS

United States Renal Data Systems

UV

Urine volume

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chaudhry, R.I., Chopra, T., McCall, N.N., Golper, T. (2022). Incremental Peritoneal and Hemodialysis. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-319-90760-4_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90760-4_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90760-4

  • Online ISBN: 978-3-319-90760-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics