Skip to main content

Ultrafiltration Failure

  • Living reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis

Abstract

Ultrafiltration failure is one of the most important complications of peritoneal dialysis (PD). It is seen more frequently in patients treated with PD for a longer period of time, especially when residual urine production is absent. Ultrafiltration failure often leads to overhydration, which is probably the most important cause of cardiovascular death in PD patients. This chapter describes the mechanism of fluid transport during peritoneal dialysis and discusses the proper definition of ultrafiltration failure. It summarizes a variety of causes of homeostasis failure and practical guidelines are presented to make an appropriate diagnosis. The possible therapeutical measures are discussed extensively. Special interest is given to prevention of fluid overload in PD patients and in addition prospects for the future are debated.

This chapter is an update and modification of chapter 17 by S. Mujais and W. Smit published in the 3rd. edition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int. 1989;35:1234–44.

    Article  CAS  PubMed  Google Scholar 

  2. Parikova A, Smit W, Zweers MM, Struijk DG, Krediet RT. Free water transport, small pore transport and the osmotic gradient. Nephrol Dial Transplant. 2008;23:2350–5.

    Article  CAS  PubMed  Google Scholar 

  3. Struijk DG, Krediet RT, Imholz ALT, Koomen GCM, Arisz L. Fluid kinetics in CAPD patients during dialysis with a bicarbonate-based hypoosmolar solution. Blood Purif. 1996;14:217–26.

    Article  CAS  PubMed  Google Scholar 

  4. Stelin G, Rippe B. A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int. 1990;38:465–72.

    Article  CAS  PubMed  Google Scholar 

  5. Ni J, Verbavatz J-M, Rippe A, Boisde I, Moulin P, Rippe B, et al. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int. 2006;69:1518–25.

    Article  CAS  PubMed  Google Scholar 

  6. Krediet RT, Imholz ALT, Struijk DG, Koomen GCM, Arisz L. Ultrafiltration failure in continuous ambulatory peritoneal dialysis. Perit Dial Int. 1992;13(suppl 2):S59–66.

    Google Scholar 

  7. Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med. 1969;70:931–41.

    Article  CAS  PubMed  Google Scholar 

  8. Mujais S, Nolph KD, Gokal R, Blake P, Burkart J, Coles G, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. Perit Dial Int. 2000;20(suppl 4):S5–S21.

    Article  PubMed  Google Scholar 

  9. Smit W, Struijk DG, Ho-dac-Pannekeet MM, Krediet RT. Quantification of free water transport in peritoneal dialysis. Kidney Int. 2004;66:849–54.

    Article  PubMed  Google Scholar 

  10. La Milia V, Di Fillipo S, Crepaldi M, Dell Vecchio L, DellÓro C, Andrulli S, et al. Mini-peritoneal equilibration test: a simple and fast method to assess free water transport and small solute transport across the peritoneal membrane. Kidney Int. 2000;68:840–6.

    Article  Google Scholar 

  11. Parikova A, Smit W, Struijk DG, Zweers MM, Krediet RT. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int. 2005;68:1849–56.

    Article  PubMed  Google Scholar 

  12. Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int. 1991;40:315–25.

    Article  CAS  PubMed  Google Scholar 

  13. Krediet RT, Van Diepen ATN, Coester AM, Struijk DG. Peritoneal vasculopathy in the pathophysiology of long-term ultrafiltration failure. An hypothesis based on clinical observations. Clin Nephrol. 2019;91:1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Krediet RT. The effective lymphatic absorption rate is an accurate and useful concept in the physiology of peritoneal dialysis. Perit Dial Int. 2004;24:309–13.

    Article  PubMed  Google Scholar 

  15. Krediet RT, Balafa O. Cardiovascular risk in the peritoneal dialysis patient. Nat Rev Nephrol. 2010;6:451–60.

    Article  PubMed  Google Scholar 

  16. Davies SJ, Bryan J, Phillips L, Russell GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant. 1996;11:498–506.

    Article  CAS  PubMed  Google Scholar 

  17. Faller B, Marichal JF. Loss of ultrafiltration in continuous ambulatory peritoneal dialysis. A role for acetate. Perit Dial Bull. 1984;4:10.

    Article  Google Scholar 

  18. Verger C, Larpent L, Celicout B. Clinical significance of ultrafiltration failure on CAPD. In: La Graeca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, editors. Peritoneal dialysis. Milano: Wichtig Editore; 1986. p. 91–4.

    Google Scholar 

  19. Ronco C, Ferianai M, Chiaramonte S, et al. Pathophysiology of ultrafiltration in peritoneal dialysis. Perit Dial Int. 1990;10:119.

    Article  CAS  PubMed  Google Scholar 

  20. Mactier RA. Investigation and management of ultrafiltration failure in CAPD. Adv Perit Dial. 1991;7:57–62.

    CAS  PubMed  Google Scholar 

  21. Korbet SM. Work-up of ultrafiltration failure. Adv Renal Replacement Ther. 1998;5:194–204.

    Article  CAS  Google Scholar 

  22. Heimburger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int. 1990;38:495–506.

    Article  CAS  PubMed  Google Scholar 

  23. Kawaguchi Y, Hasegawa T, Nakayama M, Kubo H, Shigematu T. Issues affecting the longevity of the continuous peritoneal dialysis therapy. Kidney Int Suppl. 1997;62:S105–7.

    CAS  PubMed  Google Scholar 

  24. Sampimon DE, Coester AM, Struijk DG, Krediet RT. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrol Dial Transplant. 2011;26:291–8.

    Article  PubMed  Google Scholar 

  25. Smit W, Schouten N, Van den Berg N, Langelijk M, Struijk DG, Krediet RT. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int. 2004;24:562–70.

    Article  PubMed  Google Scholar 

  26. Mistry CD, Gokal R, Mallick NP. Ultrafiltration with an iso-osmotic solution during long peritoneal dialysis exchanges. Lancet. 1987;2:178–82.

    Article  CAS  PubMed  Google Scholar 

  27. Imholz ALT, Brown CB, Koomen GCM, Arisz L, Krediet RT. The effect of glucose polymers on water removal and protein clearances during CAPD. Adv Perit Dial. 1993;9:25–30.

    CAS  PubMed  Google Scholar 

  28. Ho-dac-Pannekeet MM, Schouten N, Langendijk MJ, Hiralall JK, de Waart DR, Struijk DG, Krediet R. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int. 1996;50:979–86.

    Article  CAS  PubMed  Google Scholar 

  29. Peers E, Gokal R. Icodextrin: overview of clinical experience. Perit Dial Int. 1997;17:22–6.

    Article  CAS  PubMed  Google Scholar 

  30. Peers E, Gokal R. Icodextrin provides long dwell peritoneal dialysis and maintenance of intraperitoneal volume. Artif Organs. 1998;22:8–12.

    Article  CAS  PubMed  Google Scholar 

  31. Posthuma N, ter Wee PM, Verbruh HA, Oe PL, Peers E, Sayers J, Donker AJM. Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysis creatinine clearance. Nephrol Dial Transplant. 1997;12(Suppl. 1):550–3.

    Article  CAS  PubMed  Google Scholar 

  32. Woodrow G, Stables G, Oldroyd R, Gibson J, Turney JH, Brownjohn AM. Comparison of icodextrin and glucose solutions for the daytime dwell in automated peritoneal dialysis. Nephrol Dial Transplant. 1999;14:1530–5.

    Article  CAS  PubMed  Google Scholar 

  33. Wilkie ME, Plant MJ, Edwards L, Brown CB. Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of technique survival. Perit Dial Int. 1997;17:84–7.

    Article  CAS  PubMed  Google Scholar 

  34. Mujais S. Ultrafiltration management in automated peritoneal dialysis. Contrib Nephrol. 1999;129:255–66.

    Article  CAS  PubMed  Google Scholar 

  35. Finkelstein F, Healy H, Abu-Alfa A, Ahmad S, Brown F, Gehr T, et al. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol. 2005;16:546–54.

    Article  CAS  PubMed  Google Scholar 

  36. Litherland J, Gibson M, Sambrook P, Lupton E, Beaman M, Ackrill P. Investigation and treatment of poor drains of dialysate fluid associated with anterior abdominal wall leaks in patients on chronic ambulatory peritoneal dialysis. Nephrol Dial Transplant. 1992;7:1030–4.

    CAS  PubMed  Google Scholar 

  37. Scanziani R, Dozio B, Caimi F, De Rossi N, Magfri F, Surian M. Peritoneography and peritoneal computerized tomography: a new approach to non-infectious complications of CAPD. Nephrol Dial Transplant. 1992;7:1035–8.

    CAS  PubMed  Google Scholar 

  38. Cochran ST, Do HM, Ronaghi A, Nissenson AR, Kadell BM. Complications of peritoneal dialysis: evaluation with CT peritoneography. Radiographics. 1997;17:869–78.

    Article  CAS  PubMed  Google Scholar 

  39. Crabtree JH. Peritoneal dialysis catheter implantation: avoiding problems and optimizing outcomes. Semin Dial. 2015;28:12–5.

    Article  PubMed  Google Scholar 

  40. Twardowski ZJ. Clinical value of standardized equilibration tests in CAPD patients. Blood Purif. 1989;7:95–108.

    Article  CAS  PubMed  Google Scholar 

  41. Twardowski ZJ, Nolph K, Khanna R, Prowant B, Ryan L, Moore H, Neilsen M. Peritoneal equilibration test. Perit Dial Bull. 1987;7:138–47.

    Article  Google Scholar 

  42. Smit W, Van Dijk P, Langendijk M, Schouten N, van den Berg N, Struijk DG, Krediet RT. Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int. 2003;23:440–9.

    Article  CAS  PubMed  Google Scholar 

  43. Monquil MC, Imholz AL, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Perit Dial Int. 1995;15:42–8.

    Article  CAS  PubMed  Google Scholar 

  44. Westra W, Smit W, Zweers M, Struijk DG, Krediet RT. Correction of sodium sieving for diffusion from the circulation. Adv Perit Dial. 2003;19:6–9.

    PubMed  Google Scholar 

  45. Pride ET, Gustafson J, Graham A, Spainhour L, Mauck V, Brown P, Burkart JM. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Perit Dial Int. 2002;22:365–70.

    Article  CAS  PubMed  Google Scholar 

  46. Smit W, Langedijk MJ, Schouten N, van den Berg N, Struijk DG, Krediet RT. A comparison between 1.36% and 3.86% glucose dialysis solution for the assessment of peritoneal membrane function. Perit Dial Int. 2000;20:734–41.

    Article  CAS  PubMed  Google Scholar 

  47. LaMilia V, Di Fillipo S, Crepaldie M, Del Vecchio L, Delloro C, Andrulli S, et al. Mini-peritoneal equilibration test. A simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 2005;68:840–6.

    Article  CAS  Google Scholar 

  48. Rodrigues AS, Silva S, Bravo F, Fonseca J, Cabrita A, Krediet RT. Peritoneal membrane evaluation in routine clinical practice. Blood Purif. 2007;25:497–504.

    Article  PubMed  Google Scholar 

  49. Cnossen TT, Smit W, Konings CJ, Kooman JP, Leunissen KM, Krediet RT. Quantification of free water transport during the peritoneal equilibration test. Perit Dial Int. 2009;29:523–7.

    Article  PubMed  Google Scholar 

  50. Bernardo AP, Auxiliadoro M, Santos O, del Peso G, Carvalho MJ, Cabrita A, et al. Two-in-one protocol: simultaneous small-pore and ultrasmall-pore peritoneal transport quantification. Perit Dial Int. 2012;32:537–44.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Venturoli D, Rippe B. Validation by computer simulation of two indirect methods for quantification of free water transport in peritoneal dialysis. Perit Dial Int. 2005;25:77–84.

    Article  PubMed  Google Scholar 

  52. van Olden RW, Guchelaar HJ, Struijk DG, Krediet RT, Arisz L. Acute effects of high-dose furosemide on residual renal function. Perit Dial Int. 2003;23:339–47.

    Article  PubMed  Google Scholar 

  53. Medcalf JF, Harris KPG, Walls J. Role of diuretics in the preservation of residual renal function in patients on continuous ambulatory peritoneal dialysis. Kidney Int. 2001;59:1128–33.

    Article  CAS  PubMed  Google Scholar 

  54. Bargman JM, Thorpe KE, Churchill DN, CANUSA Peritoneal Dialysis Study Group. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. J Am Soc Nephrol. 2001;12:2158–62.

    Article  PubMed  Google Scholar 

  55. Termorshuizen F, Korevaar JC, Dekker FW, van Maanen JG, Boeschoten EW, Krediet RT, et al. The relative importance of residual renal function compaired with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands cooperative study on the adequacy of dialysis (NECOSAD)-2. Am J Kidney Dis. 2003;41:1293–303.

    Article  PubMed  Google Scholar 

  56. Lee MJ, Park IT, Park KS, Kwon YE, Oh HJ, Yoo TH, et al. Prognostic value of residual urine volume, GFR by 24-hour urine collection, and eGFR in patients receiving dialysis. Clin J Am Soc Nephrol. 2017;12:426–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krediet RT. Preservation of residual kidney function and urine volume in patients on dialysis. Clin J Am Soc Nephrol. 2017;12:377–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Heimbürger O, Waniewski J, Werynski A, Sun Park M, Lindholm B. Lymphatic absorption in CAPD patients with loss of ultrafiltration capacity. Blood Purif. 1995;13:327–39.

    Article  PubMed  Google Scholar 

  59. Krediet RT, Struijk DG, Koomen GC, Arisz L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Trans. 1991;37:662–7.

    CAS  PubMed  Google Scholar 

  60. Koomen GC, Krediet RT, Leegwater AC, Struijk DG, Arisz L, Hoek FJ. A fast reliable method for the measurement of intraperitoneal dextran 70, used to calculate lymphatic absorption. Adv Perit Dial. 1991;7:10–4.

    CAS  PubMed  Google Scholar 

  61. Rippe B, Rosengren BI, Venturoli D. The peritoneal microcirculation in peritoneal dialysis. Microcirculation. 2001;8:303–3209.

    Article  CAS  PubMed  Google Scholar 

  62. Waniewski J. Peritoneal fluid transport: mechanisms, pathways, methods of assessment. Arch Med Res. 2013;44:576–83.

    Article  PubMed  Google Scholar 

  63. Heimbürger O, Waniewski J. Ultrafiltration failure in peritoneal dialysis patients. Perit Dial Int. 2004;24:506–8.

    Article  PubMed  Google Scholar 

  64. Imholz ALT, Koomen GCM, Voorn WJ, Struijk DG, Arisz L, Krediet RT. Day-to-day variability of fluid and solute transport in upright and recumbent position during CAPD. Nephrol Dial Transplant. 1998;13:146–53.

    Article  CAS  PubMed  Google Scholar 

  65. Michels WM, Zweers MM, Smit W, Korevaar J, Struijk DG, van Westrhenen R, et al. Does lymphatic absorption change with the duration of peritoneal dialysis? Perit Dial Int. 2004;24:347–52.

    Article  PubMed  Google Scholar 

  66. Krediet RT, Zuyderhoudt FM, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Investig. 1987;17:43–52.

    Article  CAS  Google Scholar 

  67. Steinhauer HB, Schollmeyer P. Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int. 1986;29:584–90.

    Article  CAS  PubMed  Google Scholar 

  68. Zemel D, Koomen GC, Hart AA, ten Berge IJ, Struijk DG, Krediet RT. Relationship of TNF-alpha, interleukin-6, and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med. 1993;6:686–96.

    Google Scholar 

  69. Combet S, Van Landschoot M, Moulin P, Piech A, Verbavatz JM, Goffin E, et al. Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. J Am Soc Nephrol. 1999;10:2185–96.

    Article  CAS  PubMed  Google Scholar 

  70. Douma CE, de Waart DR, Struijk DG, Krediet RT. Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med. 1998;132:329–40.

    Article  CAS  PubMed  Google Scholar 

  71. Del Peso G, Fernandez-Reyes HC, Bajo MA, Castro MJ, Cirugeada A, et al. Factors influencing peritoneal transport parameters during the first year on peritoneal dialysis: peritonitis is the main factor. Nephrol Dial Transplant. 2005;20:1201–5.

    Article  PubMed  CAS  Google Scholar 

  72. Diepen V, van Esch S, Struijk DG, Krediet RT. The first peritonitis episode alters the natural course of peritoneal membrane characteristics in peritoneal dialysis patients. Perit Dial Int. 2015;35:324–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Pecoits-Filho R, Carvalho MJ, Stenvinkel P, Lindholm B, Heimbürger O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int. 2006;26:53–63.

    Article  CAS  PubMed  Google Scholar 

  74. Lambie M, Chess J, Donovan KL, Kim YL, Do JY, Lee HB, Noh H, Williams PF, Williams AJ, Davison S, Dorval M, Summers A, Williams JD, Bankart J, Davies SJ, Topley N. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol. 2013;24:2071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yáñez-Mó M, Lara-Pezzi E, Selgas R, Ramírez-Huesca M, Domínguez-Jimenez C, Jemenez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403–13.

    Article  PubMed  Google Scholar 

  76. Aroeira LS, Loureiro J, González-Mateo GT, Fernandez-Millara V, del Peso G, Sánchez-Tomero JA, et al. Characterization of epithelial-to-mesenchymal transition of mesothelial cells in a mouse model of chronic peritoneal exposure to high glucose dialysate. Perit Dial Int. 2008;28(Suppl 5):S29–33.

    Article  PubMed  Google Scholar 

  77. Aroeira LS, Aguilera A, Selgas R, Ramírez-Huesca M, Pérez-Lozano ML, Cirugeda A, et al. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am J Kidney Dis. 2005;46:938–48.

    Article  CAS  PubMed  Google Scholar 

  78. Zweers MM, de Waart DR, Smit W, Struijk DG, Krediet RT. Growth factors VEGF and TGF-beta1 in peritoneal dialysis. J Lab Clin Med. 1999;134:124–32.

    Article  CAS  PubMed  Google Scholar 

  79. Van Esch S, Zweers MM, Jansen MA, de Waart DR, van Manen JG, Krediet RT. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients. Perit Dial Int. 2004;24:554–61.

    Article  PubMed  Google Scholar 

  80. Selgas R, Fernandez-Reyes MJ, Bosque E, Bajo M-A, Borrego F, Jimenez C, et al. Functional longevity of the human peritoneum: how long is continuous peritoneal dialysis possible? Results of a prospective medium long-term study. Am J Kidney Dis. 1994;23:64–73.

    Article  CAS  PubMed  Google Scholar 

  81. Coester AM, Smit W, Struijk DG, Parikova A, Krediet RT. Longitudinal analysis of peritoneal fluid transport and its determinants in a cohort of incident peritoneal dialysis patients. Perit Dial Int. 2014;34:195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 2004;66:2437–45.

    Article  CAS  PubMed  Google Scholar 

  83. Parikova A, Smit W, Struijk DG, Krediet RT. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int. 2006;70:1988–94.

    Article  CAS  PubMed  Google Scholar 

  84. Gotloib L, Shostak A, Bar-Shella P, Cohen R. Continuous mesothelial injury and regeneration during long-term peritoneal dialysis. Perit Dial Int. 1987;7:148–55.

    Article  Google Scholar 

  85. Mateijsen MA, van der Wal AC, Hendriks PM, Zweers MM, Krediet R, T. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int. 1999;19:517–25.

    Article  CAS  PubMed  Google Scholar 

  86. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13:470–9.

    Article  PubMed  Google Scholar 

  87. Morelle J, Snow A, Hautem N, Bouzin C, Crott R, Devuijst O, et al. Interstitial fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis. J Am Soc Nephrol. 2015;26:2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lopes Barreto D, Sampimon DE, Struijk DG, Krediet RT. Early detection of imminent encapsulating peritoneal sclerosis: free water transport, selected effluent proteins or both? Perit Dial Int. 2019;39:83–9.

    Article  Google Scholar 

  89. Krediet RT, Lopes Barreto D, Struijk DG. Can free water transport be used as a clinical parameter for peritoneal fibrosis in long-term PD patients? Perit Dial Int. 2016;36:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Krediet RT, Van Diepen ATN, Coester AM, Struijk DG. Peritoneal vasculopathy in the pathophysiology of long-term ultrafiltration failure. An hypothesis based on clinical observations. Clin Nephrol. 2019;19:1–8.

    Article  Google Scholar 

  91. Ripley EB, Gehr TW, Kish CW, Sica DA. Hormonal, blood pressure, and peritoneal transport response to short-term ACE inhibition. Perit Dial Int. 1994;14:378–83.

    Article  CAS  PubMed  Google Scholar 

  92. Kumano K, Go M, Ning H, Sakai T. Effects of vasodilators on peritoneal solute and fluid transport in rat peritoneal dialysis. Adv Perit Dial. 1996;12:27–32.

    CAS  PubMed  Google Scholar 

  93. Makita Z, Radoff S, Rayfield EJ, Yang Z, Skonik E, Delaney V, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325:836–42.

    Article  CAS  PubMed  Google Scholar 

  94. Nakayama M, Kawaguchi Y, Yamada K, Hasegawa T, Takazoe K, Katok N, et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int. 1997;51:182–6.93.

    Article  CAS  PubMed  Google Scholar 

  95. Combet S, Miyata T, Moulin P, Pouthier D, Goffin E, Devuyst O. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J Am Soc Nephrol. 2000;11:717–28.

    Article  CAS  PubMed  Google Scholar 

  96. Honda K, Nita K, Horita S, Yumura W, Nihei N, Nagai R, et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultrafiltration. Nephrol Dial Transplant. 1999;14:1541–9.

    Article  CAS  PubMed  Google Scholar 

  97. Schleifer C, Ziemek H, Teehan B, Benz R, Sigler M, Gilgore G. Migration of peritoneal catheters: personal experience and survey of 72 other units. Perit Dial Bull. 1987;7:189–93.

    Article  Google Scholar 

  98. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Residual volume measurements in CAPD patients with exogenous and endogenous solutes. Adv Perit Dial. 1992;8:33–8.

    CAS  PubMed  Google Scholar 

  99. Parikova A, Zweers MM, Hiralall JK, Struijk DG, Krediet RT. Does the residual volume after drainage matter in peritoneal dialysis treatment? Perit Dial Int. 2004;24:75–7.

    Article  PubMed  Google Scholar 

  100. Tzamaloukas A, Gibel L, Eisenberg B, Goldman R, Kanig S, Zager P, et al. Early and late peritoneal leaks in patients on CAPD. Adv Perit Dial. 1990;6:64–71.

    CAS  PubMed  Google Scholar 

  101. Twardowski ZJ, Tully R, Nichols W. Computerized tomography CT in the diagnosis of subcutaneous leak sites during continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Bull. 1984;4:163–6.

    Article  Google Scholar 

  102. Schultz S, Harmon T, Nachtnebel K. Computerized tomographic scanning with intraperitoneal contrast enhancement in a CAPD patient with localized edema. Perit Dial Bull. 1984;4:253–4.

    Article  Google Scholar 

  103. Wankowicz Z, Pietrzak B, Przedlacki J. Colloid peritoneoscintigraphy in complications of CAPD. Adv Perit Dial. 1988;4:138–43.

    Google Scholar 

  104. Kopecky R, Frymoyer P, Witanowski L, Thomas F, Wojtaszek J, Reinitz E. Prospective peritoneal scintigraphy in patients beginning continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1990;15:228–36.

    Article  CAS  PubMed  Google Scholar 

  105. Vaios V, Gregorianos PI, Liakopoulos V, Agarwal R. Assessment and management of hypertension among patients on peritoneal dialysis. Clin J Am Soc Nephrol. 2019;14:297–305.

    Article  PubMed  Google Scholar 

  106. Gunal AI, Duman S, Ozkahya M, Toz H, Asci G, Akcicek F, et al. Strict volume control normalizes hypertension in peritoneal dialysis patients. Am J Kidney Dis. 2001;37:588–93.

    Article  CAS  PubMed  Google Scholar 

  107. Jansen MAM, Hart AAM, Korevaar JC, Dekker FW, Boeschoten EW, Kredier RT. Predictors of the decline rate of residual renal function in incident dialysis patients. Kidney Int. 2002;62:1046–53.

    Article  PubMed  Google Scholar 

  108. Li PK, Chow KM, Wong TYH, Leung CB, Szeto CC. Effects of angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. Ann Int Med. 2003;139:105–12.

    Article  CAS  PubMed  Google Scholar 

  109. Kolesnyk I, Noordzij M, Dekker FW, Boeschoten EW, Krediet RT. Treatment with A-II inhibitors and residual renal function in PD patients. Perit Dial Int. 2011;31:53–9.

    Article  PubMed  Google Scholar 

  110. Kolesnyk I, Dekker FW, Noordzij M, le Cessie S, Struijk DG, Krediet RT. The impact of ACE inhibitors and AII receptor blockers on the peritoneal membrane transport characteristics in long-term PD patients. Perit Dial Int. 2007;27:446–53.

    Article  CAS  PubMed  Google Scholar 

  111. Kolesnyk I, Noordzij M, Dekker FW, Boeschoten EW, Krediet RT. A positive effect of AII-inhibitors on peritoneal membrane function in long-term PD patients. Nephrol Dial Transplant. 2009;24:272–7.

    Article  CAS  PubMed  Google Scholar 

  112. Fine A, Fontaine B, Ma M. Commonly prescribed salt intake in continuous ambulatory peritoneal dialysis is too restrictive: results of a double-blind crossover study. J Am Soc Nephrol. 1997;8:1311–4.

    Article  CAS  PubMed  Google Scholar 

  113. Vargemezis V, Thodis E. Prevention and management of peritonitis and exit-site infection in patients on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2001;16(Suppl 6):106–8.

    Article  PubMed  Google Scholar 

  114. Krediet RT, Ho-dac-Pannekeet MM, Imholz ALT, Struijk DG. Icodextrin’s effect on peritoneal transport. Perit Dial Int. 1997;17:35–41.

    Article  CAS  PubMed  Google Scholar 

  115. Krediet RT, Mujais S. Use of icodextrin in high transport ultrafiltration failure. Kidney Int Suppl. 2002;81:S53–61.

    Article  CAS  Google Scholar 

  116. Gokal R, Mistry CD, Peers EM, MIDAS Study Group. Peritonitis occurrence in a multicentre study of icodextrin and glucose in CAPD. Perit Dial Int. 1995;15:226–30.

    Article  CAS  PubMed  Google Scholar 

  117. Posthuma N, ter Weel PM, Donnker AJM, Peers EM, Oe PL, Vergrugh HA. Icodextrin use is CCPD patients during peritonitis: ultrafiltration and serum disaccharide concentrations. Nephrol Dial Transplant. 1998;13:2341–4.e.

    Article  CAS  PubMed  Google Scholar 

  118. Gobin J, Fernando S, Santacroce S, Finkelstein FO. The utility of two daytime icodextrin exchanges to reduce dextrose exposure in automated peritoneal dialysis patients: a pilot study in nine patients. Blood Purif. 2008;26:279–83.

    Article  CAS  PubMed  Google Scholar 

  119. Sav T, Oymak O, Inanc MT, Dogan A, Tokgoz B, Utas C. Effects of twice-daily icodextrin administration on blood pressure and left ventricular mass in patients on continuous ambulatory peritoneal dialysis. Perit Dial Int. 2009;29:443–9.

    Article  CAS  PubMed  Google Scholar 

  120. Mortier S, Faict D, Lameire NH, De Vriese AS. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 2005;67:1559–65.

    Article  CAS  PubMed  Google Scholar 

  121. Wieczorowska-Tobis K, Brelinska R, Witowski J, Passlick-Deetjen J, Schaub TP, Schilling H, Breborowicz A. Evidence for less irritation to the peritoneal membrane in rats dialyzed with solutions low in glucose degradation products. Perit Dial Int. 2004;24:48–57.

    Article  CAS  PubMed  Google Scholar 

  122. Kawanishi K, Honda K, Tsukada M, Oda H, Nitta K. Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis. Perit Dial Int. 2013;33:242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hamada C, Honda K, Kawanishi K, Nakamoto H, Ito Y, Sakurada T, et al. Morphological characteristics in peritoneum in patients with neutral peritoneal dialysis solution. J Artif Organs. 2015;18:243–50.

    Article  CAS  PubMed  Google Scholar 

  124. Del Peso G, Jiménez-Heffernan JA, Selgas R, Remón C, Ossorio M, Fernández-Perpén A, et al. Biocompatible dialysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. A case control study on human biopsies. Perit Dial Int. 2016;36:129–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Schaefer B, Bartosova M, Macher-Groeppinger S, Sallay P, Voros P, Ranchin B, et al. Neutral pH and low –glucose degradation product dialysis fluids induce mayor early alterations of the peritoneal membrane in children on peritoneal dialysis. Kidney Int. 2018;94:419–29.

    Article  CAS  PubMed  Google Scholar 

  126. Elphick EH, Teece L, Chess JA, et al. Biocompatible solutions and long-term changes in peritoneal solute transport. Clin J Am Soc Nephrol. 2018;13:1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. De Alvaro F, Castro MJ, Dapena F, Bajo MA, Fdez-Reyes MJ, Romero JR, Jimenez C, et al. Peritoneal resting is beneficial in peritoneal hyper permeability and ultrafiltration failure. Adv Perit Dial. 1993;9:56–61.

    PubMed  Google Scholar 

  128. Miranda B, Selgas R, Celadilla O, Munoz L, Siciliae S. Peritoneal resting and heparinization as an effective treatment for ultrafiltration failure in patients on CAPD. Contrib Nephrol. 1991;89:199–204.

    Article  CAS  PubMed  Google Scholar 

  129. Rodrigues A, Cabrita A, Maia P, Guimares S. Peritoneal rest may successfully recover ultrafiltration in patients who develop hyperpermeability with time on continuous ambulatory peritoneal dialysis. Adv Perit Dial. 2002;18:78–80.

    CAS  PubMed  Google Scholar 

  130. De Sousa E, del Peso G, Alvarez L, Ros S, Mateus A, Aguilar A, et al. Peritoneal resting with heparinized lavage reverses peritoneal type 1 membrane failure. A comparative study of the resting effecs on normal membranes. Perit Dial Int. 2014;34:698–705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Krediet RT. Should peritoneal resting be advised in ultrafiltration failure associated with a fast peritoneal solute transport status? Perit Dial Int. 2014;34:695–7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ho-dac-Pannekeet MM, Struijk DG, Krediet R. Improvement of transcellular water transport by treatment with glucose free dialysate in patients with ultrafiltration failure. Nephrol Dial Transplant. 1996;11:255.

    Google Scholar 

  133. Pagniez D, Duhamel A, Boulanger E, Lessore de Sainte Foy C, Beuscart JB. No increase in small-solute transport in peritoneal dialysis patients treated without hypertonic glucose for fifty-four months. BMC Nephrol. 2017;18:278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Van de Luijtgaarden MWM, Jager KJ, Stegelmark M, Pascual J, Collart F, Hemke AC, et al. Trends in dialysis modality choice and related patient survival in the ERA-EDTA registry over a 20-year period. Nephrol Dial Transplant. 2016;31:120–8.

    Article  PubMed  Google Scholar 

  135. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective randomized controlled trial. J Am Soc Nephrol. 2002;13:1307–20.

    Article  CAS  PubMed  Google Scholar 

  136. Van Biesen W, Verger C, Heaf J, Vrtovsnik ZM, Britto L, et al. Evolution over time of volume status and PD-related practice patterns in an incident peritoneal dialysis cohort. Clin J Am Soc Nephrol. 2019;14:882–93.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Du C, Mendelson AA, Guan Q, Chapanian R, Chafeeva I, da Roza G, et al. The size-dependent efficacy and biocompatibility of hyperbranched polyglycerol in peritoneal dialysis. Biomaterials. 2014;35:1378–89.

    Article  CAS  PubMed  Google Scholar 

  138. Vychtil A, Herzog R, Probst P, Ribitsch W, Lhotta K, Machold-Fabrizii V, et al. A randomized controlled trial of alanyl-glutamine supplementation in peritoneal dialysis fluid to assess impact on biomarkers of peritoneal health. Kidney Int. 2018;94:1227–37.

    Article  CAS  Google Scholar 

  139. Dallas F, Jenkins SB, Wilkie ME. Enhanced ultrafiltration using 7.5% icodextrin/1.36% glucose combination dialysate: a pilot study. Perit Dial Int. 2004;24:542–6.

    Article  PubMed  Google Scholar 

  140. Freida P, Galach M, Divino Filho JC, Werynski A, Lindholm B. Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell. Perit Dial Int. 2007;27:267–76.

    Article  CAS  PubMed  Google Scholar 

  141. Van Biesen W, Boer W, De Greve B, Dequidt C, Vijt D, Fact D, et al. A randomized controlled trial with 0.6% aminoacids/1.4% glycerol in peritoneal dialysis solution. Perit Dial Int. 2004;24:222–30.

    Article  PubMed  Google Scholar 

  142. De Graaff M, Zegwaard A, Zweers MM, Vlijm A, de Waart DR, Vandermaele F, et al. The effects of a dialysis solution with a combination of glycerol/aminoacids/dextrose on the peritoneal membrane in chronic renal failure. Perit Dial Int. 2010;30:192–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond T. Krediet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Smit, W., Krediet, R.T. (2022). Ultrafiltration Failure. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-319-90760-4_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90760-4_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90760-4

  • Online ISBN: 978-3-319-90760-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics