Skip to main content

Hereditary Optic Neuropathies

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

The hereditary optic neuropathies consist of a group of disorders in which optic nerve dysfunction is either isolated or part of a systemic disease, and direct inheritance is clinically or genetically proven. The most common of these disorders are autosomal dominant optic atrophy (DOA) and maternally inherited Leber hereditary optic neuropathy (LHON) (Newman, Hereditary optic neuropathies. In: Miller NR, Newman NJ, Biousse V, Kerrison JB (eds) Walsh & Hoyt clinical neuro-ophthalmology, vol 1, 6th edn. Williams & Wilkins, Baltimore, pp 465–501, 2005). Other inherited neurologic and systemic syndromic diseases are frequently associated with optic neuropathies as in the case of Wolfram syndrome. A selective vulnerability of the optic nerve to perturbations in mitochondrial function may underlie a final common pathway among many of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Newman NJ. Hereditary optic neuropathies. In: Miller NR, Newman NJ, Biousse V, Kerrison JB, editors. Walsh & Hoyt clinical neuro-ophthalmology, vol. 1. 6th ed. Baltimore: Williams & Wilkins; 2005. p. 465–501.

    Google Scholar 

  2. Jurkute N, Majander A, Bowman R, Votruba M, Abbs S, Acheson J, et al. Clinical utility gene card for: inherited optic neuropathies including next-generation sequencing-based approaches. Eur J Hum Genet. 2019;27(3):494–502.

    Article  CAS  PubMed  Google Scholar 

  3. MITOMAP: A human mitochondrial genome database. Available: http://www.mitomap.org. 22 Dec 2005.

  4. Caporali L, Maresca A, Capristo M, Del Dotto V, Tagliavini F, Valentino ML, et al. Incomplete penetrance in mitochondrial optic neuropathies. Mitochondrion. 2017;36:130–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kim US, Jurkute N, Yu-Wai-Man P. Leber hereditary optic neuropathy-light at the end of the tunnel? Asia Pac J Ophthalmol (Phila). 2018;7(4):242–5.

    CAS  Google Scholar 

  6. Karanjia R, Chahal J, Ammar M, Sadun AA. Treatment of Leber’s hereditary optic neuropathy. Curr Pharm Des. 2017;23(4):624–8.

    Article  PubMed  CAS  Google Scholar 

  7. Pan BX, Ross-Cisneros FN, Carelli V, Rue KS, Salomao SR, Moraes-Filho MN, et al. Mathematically modeling the involvement of axons in Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2012;53(12):7608–17.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Votruba M. Molecular genetic basis of primary inherited optic neuropathies. Eye. 2004;18:1126–32.

    Article  CAS  PubMed  Google Scholar 

  9. Newman NJ. Hereditary optic neuropathies: from the mitochondria to the optic nerve. Am J Ophthalmol. 2005;140:517–23.

    Article  CAS  PubMed  Google Scholar 

  10. Sandbach JM, Newman NJ. Retinal masqueraders of optic nerve disease. Ophthalmol Clin N Am. 2001;14:41–59.

    CAS  Google Scholar 

  11. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242:1427–30.

    Article  CAS  PubMed  Google Scholar 

  12. Jurkute N, Yu-Wai-Man P. Leber hereditary optic neuropathy: bridging the translational gap. Curr Opin Ophthalmol. 2017;28(5):403–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Newman NJ, Biousse V. Hereditary optic neuropathies. Eye. 2004;18:1144–60.

    Article  CAS  PubMed  Google Scholar 

  14. Phillips PH, Newman NJ. Mitochondrial diseases in pediatric ophthalmology. J AAPOS. 1997;1:115–22.

    Article  CAS  PubMed  Google Scholar 

  15. Man PYW, Turnbull DM, Chinnery PF. Leber hereditary optic neuropathy. J Med Genet. 2002;39:162–9.

    Article  PubMed Central  Google Scholar 

  16. Ueda K, Morizane Y, Shiraga F, Shikishima K, Ishikawa H, Wakakura M, et al. Nationwide epidemiological survey of Leber hereditary optic neuropathy in Japan. J Epidemiol. 2017;27(9):447–50.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Majander A, Bowman R, Poulton J, Antcliff RJ, Reddy MA, Michaelides M, et al. Childhood-onset Leber hereditary optic neuropathy. Br J Ophthalmol. 2017;101(11):1505–9.

    Article  PubMed  Google Scholar 

  18. McFarland R, Chinnery PF, Blakely EL, Schaefer AM, Morris AA, Foster SM, et al. Homoplasmy, heteroplasmy, and mitochondrial dystonia. Neurology. 2007;69(9):911–6.

    Article  CAS  PubMed  Google Scholar 

  19. Harding AE, Sweeney MG, Miller DH, Mumford CJ, Kellar-Wood H, Menard D, et al. Occurrence of a multiple sclerosis-like illness in women who have a Leber's hereditary optic neuropathy mitochondrial DNA mutation. Brain J Neurol. 1992;115(Pt 4):979–89.

    Article  Google Scholar 

  20. Uittenbogaard M, Brantner CA, Fang Z, Wong LJ, Gropman A, Chiaramello A. The m.11778 A>G variant associated with the coexistence of Leber’s hereditary optic neuropathy and multiple sclerosis-like illness dysregulates the metabolic interplay between mitochondrial oxidative phosphorylation and glycolysis. Mitochondrion. 2019;46:187–94.

    Article  CAS  PubMed  Google Scholar 

  21. Newman NJ, Yu-Wai-Man P, Sadun AA, Karanjia R, Carelli V. Management of ophthalmologic manifestations of mitochondrial diseases. Genet Med. 2017;19(12)

    Google Scholar 

  22. Blanc C, Heran F, Habas C, Bejot Y, Sahel J, Vignal-Clermont C. MRI of the optic nerves and chiasm in patients with leber hereditary optic neuropathy. J Neuro-Ophthalmol. 2018;38(4):434–7.

    Article  Google Scholar 

  23. Barboni P, Carbonelli M, Savini G, Ramos Cdo V, Carta A, Berezovsky A, et al. Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology. 2010;117(3):623–7.

    Article  PubMed  Google Scholar 

  24. Karanjia R, Berezovsky A, Sacai PY, Cavascan NN, Liu HY, Nazarali S, et al. The photopic negative response: an objective measure of retinal ganglion cell function in patients with Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2017;58(6):BIO300–BIO6.

    Article  PubMed  Google Scholar 

  25. Majander A, Robson AG, Joao C, Holder GE, Chinnery PF, Moore AT, et al. The pattern of retinal ganglion cell dysfunction in Leber hereditary optic neuropathy. Mitochondrion. 2017;36:138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chinnery PF, Howell N, Andrews RM, et al. Mitochondrial DNA analysis; polymorphisms and pathogenicity. J Med Genet. 1999;36:505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milot E, Moreau C, Gagnon A, Cohen AA, Brais B, Labuda D. Mother’s curse neutralizes natural selection against a human genetic disease over three centuries. Nat Ecol Evol. 2017;1(9):1400–6.

    Article  PubMed  Google Scholar 

  28. Huopenen K. Leber hereditary optic neuropathy: clinical and molecular genetic findings. Neurogenetics. 2001;3:119–25.

    Article  Google Scholar 

  29. Newman NJ. From genotype to phenotype in Leber’s hereditary optic neuropathy: still more questions than answers. J Neuroophthalmol. 2002;22:257–61.

    Article  PubMed  Google Scholar 

  30. Howell N. LHON and other optic nerve atrophies: the mitochondrial connection. Dev Ophthalmol. 2003;37:94–108.

    Article  CAS  PubMed  Google Scholar 

  31. Caporali L, Iommarini L, La Morgia C, Olivieri A, Achilli A, Maresca A, et al. Peculiar combinations of individually non-pathogenic missense mitochondrial DNA variants cause low penetrance Leber’s hereditary optic neuropathy. PLoS Genet. 2018;14(2):e1007210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Brown MD. The enigmatic relationship between mitochondrial dysfunction and Leber’s hereditary optic neuropathy. J Neurol Sci. 1999;165:1–5.

    Article  CAS  PubMed  Google Scholar 

  33. Nakamura M, Yamamoto M. Variable pattern of visual recovery of Leber’s hereditary optic neuropathy. Br J Ophthalmol. 2000;84:534–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramos Cdo V, Bellusci C, Savini G, Carbonelli M, Berezovsky A, Tamaki C, et al. Association of optic disc size with development and prognosis of Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2009;50(4):1666–74.

    Article  PubMed  Google Scholar 

  35. Went LN. Leber hereditary optic neuropathy (LHON): a mitochondrial disease with unresolved complexities. Cytogenet Cell Genet. 1999;86:153–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sadun AA, Carelli V, Salomao SR, Berezovsky A, Quiros PA, Sadun F, et al. Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J Leber hereditary optic neuropathy. Am J Ophthalmol. 2003;136(2):231–8.

    Article  PubMed  Google Scholar 

  37. Kerrison JB, Miller NR, Hsu FC, et al. A case-control study of tobacco and alcohol consumption in Leber’s hereditary optic neuropathy. Am J Ophthalmol. 2000;130:803–12.

    Article  CAS  PubMed  Google Scholar 

  38. Kirkman MA, Yu-Wai-Man P, Korsten A, Leonhardt M, Dimitriadis K, De Coo IF, et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain. 2009;132(Pt 9):2317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bristow EA, Griffiths PG, Andrews RM, et al. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol. 2002;120:791–6.

    Article  PubMed  Google Scholar 

  40. Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23:53–89.

    Article  CAS  PubMed  Google Scholar 

  41. Carelli V, Ross-Cisneros FN, Sadun AA. Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int. 2002;40:573–84.

    Article  CAS  PubMed  Google Scholar 

  42. Sadun A. Acquired mitochondrial impairment as a cause of optic nerve disease. Trans Am Ophthalmol Soc. 1998;96:881–923.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Coussa RG, Merat P, Levin LA. Propagation and selectivity of axonal loss in Leber hereditary optic neuropathy. Sci Rep. 2019;9(1):6720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Newman NJ, Biousse V, David R, et al. Prophylaxis for second eye involvement in leber hereditary optic neuropathy: an open-labeled, nonrandomized multicenter trial of topical brimonidine purite. Am J Ophthalmol. 2005;140:407–15.

    Article  CAS  PubMed  Google Scholar 

  45. Klopstock T, Yu-Wai-Man P, Dimitriadis K, Rouleau J, Heck S, Bailie M, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 9):2677–86.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Carelli V, Carbonelli M, de Coo IF, Kawasaki A, Klopstock T, Lagreze WA, et al. International consensus statement on the clinical and therapeutic management of Leber hereditary optic neuropathy. J Neuro-Ophthalmol. 2017;37(4):371–81.

    Article  Google Scholar 

  47. Carelli V, La Morgia C, Valentino ML, Rizzo G, Carbonelli M, De Negri AM, et al. Idebenone treatment in Leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 9):e188.

    Article  PubMed  Google Scholar 

  48. Sadun AA, Chicani CF, Ross-Cisneros FN, Barboni P, Thoolen M, Shrader WD, et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch Neurol. 2012;69(3):331–8.

    Article  PubMed  Google Scholar 

  49. Erb M, Hoffmann-Enger B, Deppe H, Soeberdt M, Haefeli RH, Rummey C, et al. Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS One. 2012;7(4):e36153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. European Medicines Agency. Raxone. https://www.ema.europa.eu/en/medicines/human/EPAR/raxone; 2015.

  51. Kogachi K, Ter-Zakarian A, Asanad S, Sadun A, Karanjia R. Toxic medications in Leber’s hereditary optic neuropathy. Mitochondrion. 2019;46:270–7.

    Article  CAS  PubMed  Google Scholar 

  52. Biousse V, Pardue MT, Wallace DC, Newman NJ. The eyes of mito-mouse. J Neuroophthalmol. 2002;22:279–85.

    Article  PubMed  Google Scholar 

  53. Brown DA, Hale SL, Baines CP, del Rio CL, Hamlin RL, Yueyama Y, et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. J Cardiovasc Pharmacol Ther. 2014;19(1):121–32.

    Article  CAS  PubMed  Google Scholar 

  54. Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2016;123(3):558–70.

    Article  PubMed  Google Scholar 

  55. Yang S, Ma SQ, Wan X, He H, Pei H, Zhao MJ, et al. Long-term outcomes of gene therapy for the treatment of Leber’s hereditary optic neuropathy. EBioMedicine. 2016;10:258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J. SOD2 gene transfer protects against optic neuropathy induced by deficiency of complex I. Ann Neurol. 2004;56:182–91.

    Article  CAS  PubMed  Google Scholar 

  57. Qi X, Lewin AS, Hauswirth WW, Guy J. Optic neuropathy induced by reductions in mitochondrial superoxide dismutase. Invest Ophthalmol Vis Sci. 2003;44:1088–96.

    Article  PubMed  Google Scholar 

  58. Qi X, Lewin AS, Hauswirth WW, Guy J. Suppression of complex I gene expression induces optic neuropathy. Ann Neurol. 2003;53:198–205.

    Article  CAS  PubMed  Google Scholar 

  59. Guy J, Qi X, Pallotti F, et al. Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol. 2002;52:534–42.

    Article  CAS  PubMed  Google Scholar 

  60. Hayden EC. Regulators weigh benefits of ‘three-parent’ fertilization. Nature. 2013;502(7471):284–5.

    Article  PubMed  CAS  Google Scholar 

  61. Ishii T, Hibino Y. Mitochondrial manipulation in fertility clinics: regulation and responsibility. Reprod Biomed Soc Online. 2018;5:93–109.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Liu H, Luo S, Lu Z, Chavez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online. 2017;34(4):361–8.

    Article  PubMed  Google Scholar 

  63. Lenaers G, Hamel C, Delettre C, Amati-Bonneau P, Procaccio V, Bonneau D, et al. Dominant optic atrophy. Orphanet J Rare Dis. 2012;7:46.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Votruba M, Fitzke FW, Holder GE, et al. Clinical features in affected individuals from 21 pedigrees with dominant optic atrophy. Arch Ophthalmol. 1998;116:351–8.

    Article  CAS  PubMed  Google Scholar 

  65. Delettre C, Lenaers G, Pelloquin L, et al. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab. 2002;75:97–107.

    Article  CAS  PubMed  Google Scholar 

  66. Zanna C, Ghelli A, Porcelli AM, Karbowski M, Youle RJ, Schimpf S, et al. OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain. 2008;131(Pt 2):352–67.

    Article  PubMed  Google Scholar 

  67. Yu-Wai-Man P, Votruba M, Burte F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132(6):789–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greaves LC, Yu-Wai-Man P, Blakely EL, Krishnan KJ, Beadle NE, Kerin J, et al. Mitochondrial DNA defects and selective extraocular muscle involvement in CPEO. Invest Ophthalmol Vis Sci. 2010;51(7):3340–6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Payne M, Yang Z, Katz BJ, et al. Dominant optic atrophy, sensoryneural hearing loss, ptosis, and ophthalmoplegia: a syndrome caused by a missence mutation in OPA1. Am J Ophthalmol. 2004;138:749–55.

    Article  CAS  PubMed  Google Scholar 

  70. Barboni P, Valentino ML, La Morgia C, Carbonelli M, Savini G, De Negri A, et al. Idebenone treatment in patients with OPA1-mutant dominant optic atrophy. Brain. 2013;136(Pt 2):e231.

    Article  PubMed  Google Scholar 

  71. Sarzi E, Seveno M, Piro-Megy C, Elziere L, Quiles M, Pequignot M, et al. OPA1 gene therapy prevents retinal ganglion cell loss in a dominant optic atrophy mouse model. Sci Rep. 2018;8(1):2468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hanein S, Garcia M, Fares-Taie L, Serre V, De Keyzer Y, Delaveau T, et al. TMEM126A is a mitochondrial located mRNA (MLR) protein of the mitochondrial inner membrane. Biochim Biophys Acta. 2013;1830(6):3719–33.

    Article  CAS  PubMed  Google Scholar 

  73. Toppings NB, McMillan JM, Au PYB, Suchowersky O, Donovan LE. Wolfram syndrome: a case report and review of clinical manifestations, genetics pathophysiology, and potential therapies. Case Rep Endocrinol. 2018;2018:9412676.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cagalinec M, Liiv M, Hodurova Z, Hickey MA, Vaarmann A, Mandel M, et al. Role of mitochondrial dynamics in neuronal development: mechanism for Wolfram syndrome. PLoS Biol. 2016;14(7):e1002511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rouzier C, Moore D, Delorme C, Lacas-Gervais S, Ait-El-Mkadem S, Fragaki K, et al. A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions. Hum Mol Genet. 2017;26(9):1599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lu S, Kanekura K, Hara T, Mahadevan J, Spears LD, Oslowski CM, et al. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc Natl Acad Sci U S A. 2014;111(49):E5292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yusta B, Baggio LL, Estall JL, Koehler JA, Holland DP, Li H, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 2006;4(5):391–406.

    Article  CAS  PubMed  Google Scholar 

  78. Hara T, Mahadevan J, Kanekura K, Hara M, Lu S, Urano F. Calcium efflux from the endoplasmic reticulum leads to beta-cell death. Endocrinology. 2014;155(3):758–68.

    Article  CAS  PubMed  Google Scholar 

  79. Li Z, Wu F, Zhang X, Chai Y, Chen D, Yang Y, et al. Valproate attenuates endoplasmic reticulum stress-induced apoptosis in SH-SY5Y Cells via the AKT/GSK3beta signaling pathway. Int J Mol Sci. 2017;18(2)

    Google Scholar 

  80. Desir J, Coppieters F, Van Regemorter N, De Baere E, Abramowicz M, Cordonnier M. TMEM126A mutation in a Moroccan family with autosomal recessive optic atrophy. Mol Vis. 2012;18:1849–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Majander A, Bitner-Glindzicz M, Chan CM, Duncan HJ, Chinnery PF, Subash M, et al. Lamination of the outer plexiform layer in optic atrophy caused by dominant WFS1 mutations. Ophthalmology. 2016;123(7):1624–6.

    Article  PubMed  Google Scholar 

  82. Katz BJ, Zhao Y, Warner JE, Tong Z, Yang Z, Zhang K. A family with X-linked optic atrophy linked to the OPA2 locus Xp11.4-Xp11.2. Am J Med Genet A. 2006;140(20):2207–11.

    Article  PubMed  Google Scholar 

  83. Anttonen AK, Laari A, Kousi M, Yang YJ, Jaaskelainen T, Somer M, et al. ZNHIT3 is defective in PEHO syndrome, a severe encephalopathy with cerebellar granule neuron loss. Brain. 2017;140(5):1267–79.

    Article  PubMed  Google Scholar 

  84. Yahalom G, Anikster Y, Huna-Baron R, Hoffmann C, Blumkin L, Lev D, et al. Costeff syndrome: clinical features and natural history. J Neurol. 2014;261(12):2275–82.

    Article  CAS  PubMed  Google Scholar 

  85. Carelli V, La Morgia C, Valentino ML, Barboni P, Ross-Cisneros FN, Sadun AA. Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders. Biochim Biophys Acta. 2009;1787(5):518–28.

    Article  CAS  PubMed  Google Scholar 

  86. Minton JA, Rainbow LA, Ricketts C, Barrett TG. Wolfram syndrome. Rev Endocr Metab Disord. 2003;4:53–9.

    Article  CAS  PubMed  Google Scholar 

  87. Smith CJ, Crock PA, King BR, et al. Phenotype-genotype correlations in a series of wolfram syndrome families. Diabetes Care. 2004;27:2003–9.

    Article  PubMed  Google Scholar 

  88. Hofmann S, Philbrook C, Gerbitz KD, Bauer MF. Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Hum Mol Genet. 2003;12:2003–12.

    Article  CAS  PubMed  Google Scholar 

  89. Klockgether T, Wullner U, Spauschus A, et al. The molecular biology of the autosomal dominant cerebellar ataxias. Mov Disord. 2000;15:604–12.

    Article  CAS  PubMed  Google Scholar 

  90. Albin RL. Dominant ataxias and Friedreich ataxia: an update. Curr Opin Neurol. 2003;16:507–14.

    Article  PubMed  Google Scholar 

  91. Abe T, Abe K, Aoki M, et al. Ocular changes in patients with spinocerebellar degeneration and repeated trinucleotide expansion of spinocerebellar ataxia type 1 gene. Arch Ophthalmol. 1997;115:231–6.

    Article  CAS  PubMed  Google Scholar 

  92. Lynch DR, Farmer J. Practical approaches to neurogenetic disease. J Neuroophthalmol. 2002;22:297–304.

    Article  PubMed  Google Scholar 

  93. Fortuna F, Barboni P, Liguori R, Valentino ML, Savini G, Gellera C, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain. 2009;132(Pt 1):116–23.

    Article  PubMed  Google Scholar 

  94. Wentz S, Jusufbegovic D. Spinocerebellar ataxia. Ophthalmology. 2017;124(7):1071.

    Article  PubMed  Google Scholar 

  95. Politi LS, Bianchi Marzoli S, Godi C, Panzeri M, Ciasca P, Brugnara G, et al. MRI evidence of cerebellar and extraocular muscle atrophy differently contributing to eye movement abnormalities in SCA2 and SCA28 diseases. Invest Ophthalmol Vis Sci. 2016;57(6):2714–20.

    Article  CAS  PubMed  Google Scholar 

  96. Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF, Teer JK, et al. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet. 2011;7(10):e1002325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tranchant C, Anheim M. Movement disorders in mitochondrial diseases. Rev Neurol. 2016;172(8–9):524–9.

    Article  CAS  PubMed  Google Scholar 

  98. Cesnekova J, Rodinova M, Hansikova H, Zeman J, Stiburek L. Loss of mitochondrial AAA proteases AFG3L2 and YME1L impairs mitochondrial structure and respiratory chain biogenesis. Int J Mol Sci. 2018;19(12)

    Google Scholar 

  99. Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  100. Tan CA, Rabideau M, Blevins A, Westbrook MJ, Ekstein T, Nykamp K, et al. Autosomal recessive MFN2-related Charcot-Marie-tooth disease with diaphragmatic weakness: case report and literature review. Am J Med Genet A. 2016;170(6):1580–4.

    Article  CAS  PubMed  Google Scholar 

  101. Abrams AJ, Hufnagel RB, Rebelo A, Zanna C, Patel N, Gonzalez MA, et al. Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nat Genet. 2015;47(8):926–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Magri S, Fracasso V, Plumari M, Alfei E, Ghezzi D, Gellera C, et al. Concurrent AFG3L2 and SPG7 mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation. Hum Mutat. 2018;39(12):2060–71.

    Article  CAS  PubMed  Google Scholar 

  103. Gamez J, Montane D, Martorell L, Minoves T, Cervera C. Bilateral optic nerve atrophy in myotonic dystrophy. Am J Ophthalmol. 2001;131(3):398–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy J. Newman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karanjia, R., Yu-Wai-Man, P., Newman, N.J. (2021). Hereditary Optic Neuropathies. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics